Fisher encoding of differential fast point feature histograms for partial 3D object retrieval
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which i...
Ausführliche Beschreibung
Autor*in: |
Savelonas, Michalis A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Association between dopa decarboxylase gene variants and borderline personality disorder - Mobascher, Arian ELSEVIER, 2014, the journal of the Pattern Recognition Society, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2016 ; pages:114-124 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.patcog.2016.02.003 |
---|
Katalog-ID: |
ELV035638931 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV035638931 | ||
003 | DE-627 | ||
005 | 20230625205045.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.patcog.2016.02.003 |2 doi | |
028 | 5 | 2 | |a GBVA2016023000027.pica |
035 | |a (DE-627)ELV035638931 | ||
035 | |a (ELSEVIER)S0031-3203(16)00059-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 000 |a 150 | |
082 | 0 | 4 | |a 000 |q DE-600 |
082 | 0 | 4 | |a 150 |q DE-600 |
100 | 1 | |a Savelonas, Michalis A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. | ||
520 | |a Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. | ||
650 | 7 | |a Partial matching |2 Elsevier | |
650 | 7 | |a 3D object retrieval |2 Elsevier | |
650 | 7 | |a Fisher encoding |2 Elsevier | |
650 | 7 | |a Local descriptors |2 Elsevier | |
700 | 1 | |a Pratikakis, Ioannis |4 oth | |
700 | 1 | |a Sfikas, Konstantinos |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Mobascher, Arian ELSEVIER |t Association between dopa decarboxylase gene variants and borderline personality disorder |d 2014 |d the journal of the Pattern Recognition Society |g Amsterdam |w (DE-627)ELV017326583 |
773 | 1 | 8 | |g volume:55 |g year:2016 |g pages:114-124 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.patcog.2016.02.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 55 |j 2016 |h 114-124 |g 11 | ||
953 | |2 045F |a 000 |
author_variant |
m a s ma mas |
---|---|
matchkey_str |
savelonasmichalisapratikakisioannissfika:2016----:ihrnoigfifrnilatonfaueitgasopr |
hierarchy_sort_str |
2016transfer abstract |
publishDate |
2016 |
allfields |
10.1016/j.patcog.2016.02.003 doi GBVA2016023000027.pica (DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 DE-627 ger DE-627 rakwb eng 000 150 000 DE-600 150 DE-600 Savelonas, Michalis A. verfasserin aut Fisher encoding of differential fast point feature histograms for partial 3D object retrieval 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier Pratikakis, Ioannis oth Sfikas, Konstantinos oth Enthalten in Elsevier Mobascher, Arian ELSEVIER Association between dopa decarboxylase gene variants and borderline personality disorder 2014 the journal of the Pattern Recognition Society Amsterdam (DE-627)ELV017326583 volume:55 year:2016 pages:114-124 extent:11 https://doi.org/10.1016/j.patcog.2016.02.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2016 114-124 11 045F 000 |
spelling |
10.1016/j.patcog.2016.02.003 doi GBVA2016023000027.pica (DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 DE-627 ger DE-627 rakwb eng 000 150 000 DE-600 150 DE-600 Savelonas, Michalis A. verfasserin aut Fisher encoding of differential fast point feature histograms for partial 3D object retrieval 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier Pratikakis, Ioannis oth Sfikas, Konstantinos oth Enthalten in Elsevier Mobascher, Arian ELSEVIER Association between dopa decarboxylase gene variants and borderline personality disorder 2014 the journal of the Pattern Recognition Society Amsterdam (DE-627)ELV017326583 volume:55 year:2016 pages:114-124 extent:11 https://doi.org/10.1016/j.patcog.2016.02.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2016 114-124 11 045F 000 |
allfields_unstemmed |
10.1016/j.patcog.2016.02.003 doi GBVA2016023000027.pica (DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 DE-627 ger DE-627 rakwb eng 000 150 000 DE-600 150 DE-600 Savelonas, Michalis A. verfasserin aut Fisher encoding of differential fast point feature histograms for partial 3D object retrieval 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier Pratikakis, Ioannis oth Sfikas, Konstantinos oth Enthalten in Elsevier Mobascher, Arian ELSEVIER Association between dopa decarboxylase gene variants and borderline personality disorder 2014 the journal of the Pattern Recognition Society Amsterdam (DE-627)ELV017326583 volume:55 year:2016 pages:114-124 extent:11 https://doi.org/10.1016/j.patcog.2016.02.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2016 114-124 11 045F 000 |
allfieldsGer |
10.1016/j.patcog.2016.02.003 doi GBVA2016023000027.pica (DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 DE-627 ger DE-627 rakwb eng 000 150 000 DE-600 150 DE-600 Savelonas, Michalis A. verfasserin aut Fisher encoding of differential fast point feature histograms for partial 3D object retrieval 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier Pratikakis, Ioannis oth Sfikas, Konstantinos oth Enthalten in Elsevier Mobascher, Arian ELSEVIER Association between dopa decarboxylase gene variants and borderline personality disorder 2014 the journal of the Pattern Recognition Society Amsterdam (DE-627)ELV017326583 volume:55 year:2016 pages:114-124 extent:11 https://doi.org/10.1016/j.patcog.2016.02.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2016 114-124 11 045F 000 |
allfieldsSound |
10.1016/j.patcog.2016.02.003 doi GBVA2016023000027.pica (DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 DE-627 ger DE-627 rakwb eng 000 150 000 DE-600 150 DE-600 Savelonas, Michalis A. verfasserin aut Fisher encoding of differential fast point feature histograms for partial 3D object retrieval 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier Pratikakis, Ioannis oth Sfikas, Konstantinos oth Enthalten in Elsevier Mobascher, Arian ELSEVIER Association between dopa decarboxylase gene variants and borderline personality disorder 2014 the journal of the Pattern Recognition Society Amsterdam (DE-627)ELV017326583 volume:55 year:2016 pages:114-124 extent:11 https://doi.org/10.1016/j.patcog.2016.02.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2016 114-124 11 045F 000 |
language |
English |
source |
Enthalten in Association between dopa decarboxylase gene variants and borderline personality disorder Amsterdam volume:55 year:2016 pages:114-124 extent:11 |
sourceStr |
Enthalten in Association between dopa decarboxylase gene variants and borderline personality disorder Amsterdam volume:55 year:2016 pages:114-124 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Partial matching 3D object retrieval Fisher encoding Local descriptors |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Association between dopa decarboxylase gene variants and borderline personality disorder |
authorswithroles_txt_mv |
Savelonas, Michalis A. @@aut@@ Pratikakis, Ioannis @@oth@@ Sfikas, Konstantinos @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV017326583 |
dewey-sort |
0 |
id |
ELV035638931 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035638931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625205045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patcog.2016.02.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016023000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035638931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0031-3203(16)00059-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">000</subfield><subfield code="a">150</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Savelonas, Michalis A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fisher encoding of differential fast point feature histograms for partial 3D object retrieval</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial matching</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">3D object retrieval</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fisher encoding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Local descriptors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pratikakis, Ioannis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sfikas, Konstantinos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mobascher, Arian ELSEVIER</subfield><subfield code="t">Association between dopa decarboxylase gene variants and borderline personality disorder</subfield><subfield code="d">2014</subfield><subfield code="d">the journal of the Pattern Recognition Society</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV017326583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:114-124</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patcog.2016.02.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="h">114-124</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">000</subfield></datafield></record></collection>
|
author |
Savelonas, Michalis A. |
spellingShingle |
Savelonas, Michalis A. ddc 000 ddc 150 Elsevier Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
authorStr |
Savelonas, Michalis A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017326583 |
format |
electronic Article |
dewey-ones |
000 - Computer science, information & general works 150 - Psychology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
000 150 000 DE-600 150 DE-600 Fisher encoding of differential fast point feature histograms for partial 3D object retrieval Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors Elsevier |
topic |
ddc 000 ddc 150 Elsevier Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors |
topic_unstemmed |
ddc 000 ddc 150 Elsevier Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors |
topic_browse |
ddc 000 ddc 150 Elsevier Partial matching Elsevier 3D object retrieval Elsevier Fisher encoding Elsevier Local descriptors |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
i p ip k s ks |
hierarchy_parent_title |
Association between dopa decarboxylase gene variants and borderline personality disorder |
hierarchy_parent_id |
ELV017326583 |
dewey-tens |
000 - Computer science, knowledge & systems 150 - Psychology |
hierarchy_top_title |
Association between dopa decarboxylase gene variants and borderline personality disorder |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017326583 |
title |
Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
ctrlnum |
(DE-627)ELV035638931 (ELSEVIER)S0031-3203(16)00059-5 |
title_full |
Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
author_sort |
Savelonas, Michalis A. |
journal |
Association between dopa decarboxylase gene variants and borderline personality disorder |
journalStr |
Association between dopa decarboxylase gene variants and borderline personality disorder |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
114 |
author_browse |
Savelonas, Michalis A. |
container_volume |
55 |
physical |
11 |
class |
000 150 000 DE-600 150 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Savelonas, Michalis A. |
doi_str_mv |
10.1016/j.patcog.2016.02.003 |
dewey-full |
000 150 |
title_sort |
fisher encoding of differential fast point feature histograms for partial 3d object retrieval |
title_auth |
Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
abstract |
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. |
abstractGer |
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. |
abstract_unstemmed |
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Fisher encoding of differential fast point feature histograms for partial 3D object retrieval |
url |
https://doi.org/10.1016/j.patcog.2016.02.003 |
remote_bool |
true |
author2 |
Pratikakis, Ioannis Sfikas, Konstantinos |
author2Str |
Pratikakis, Ioannis Sfikas, Konstantinos |
ppnlink |
ELV017326583 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.patcog.2016.02.003 |
up_date |
2024-07-06T18:05:20.472Z |
_version_ |
1803853884790145024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035638931</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625205045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patcog.2016.02.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016023000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035638931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0031-3203(16)00059-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">000</subfield><subfield code="a">150</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Savelonas, Michalis A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fisher encoding of differential fast point feature histograms for partial 3D object retrieval</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated partial retrieval methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial matching</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">3D object retrieval</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fisher encoding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Local descriptors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pratikakis, Ioannis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sfikas, Konstantinos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mobascher, Arian ELSEVIER</subfield><subfield code="t">Association between dopa decarboxylase gene variants and borderline personality disorder</subfield><subfield code="d">2014</subfield><subfield code="d">the journal of the Pattern Recognition Society</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV017326583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:114-124</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patcog.2016.02.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="h">114-124</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">000</subfield></datafield></record></collection>
|
score |
7.402128 |