A novel delay partitioning method for stability analysis of interval time-varying delay systems
This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new au...
Ausführliche Beschreibung
Autor*in: |
Ding, Liming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Modeling and simulation of electrophoretic deposition coatings - Verma, Kevin ELSEVIER, 2020, engineering and applied mathematics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:354 ; year:2017 ; number:2 ; pages:1209-1219 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.jfranklin.2016.11.022 |
---|
Katalog-ID: |
ELV036176036 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV036176036 | ||
003 | DE-627 | ||
005 | 20230625211142.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jfranklin.2016.11.022 |2 doi | |
028 | 5 | 2 | |a GBVA2017020000028.pica |
035 | |a (DE-627)ELV036176036 | ||
035 | |a (ELSEVIER)S0016-0032(16)30441-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Ding, Liming |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel delay partitioning method for stability analysis of interval time-varying delay systems |
264 | 1 | |c 2017transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. | ||
520 | |a This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. | ||
700 | 1 | |a He, Yong |4 oth | |
700 | 1 | |a Wu, Min |4 oth | |
700 | 1 | |a Zhang, Zhiming |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Verma, Kevin ELSEVIER |t Modeling and simulation of electrophoretic deposition coatings |d 2020 |d engineering and applied mathematics |g Amsterdam [u.a.] |w (DE-627)ELV003960617 |
773 | 1 | 8 | |g volume:354 |g year:2017 |g number:2 |g pages:1209-1219 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jfranklin.2016.11.022 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 354 |j 2017 |e 2 |h 1209-1219 |g 11 | ||
953 | |2 045F |a 510 |
author_variant |
l d ld |
---|---|
matchkey_str |
dinglimingheyongwuminzhangzhiming:2017----:nvleapriinnmtofrtbltaayioitrat |
hierarchy_sort_str |
2017transfer abstract |
publishDate |
2017 |
allfields |
10.1016/j.jfranklin.2016.11.022 doi GBVA2017020000028.pica (DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 004 VZ Ding, Liming verfasserin aut A novel delay partitioning method for stability analysis of interval time-varying delay systems 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. He, Yong oth Wu, Min oth Zhang, Zhiming oth Enthalten in Elsevier Science Verma, Kevin ELSEVIER Modeling and simulation of electrophoretic deposition coatings 2020 engineering and applied mathematics Amsterdam [u.a.] (DE-627)ELV003960617 volume:354 year:2017 number:2 pages:1209-1219 extent:11 https://doi.org/10.1016/j.jfranklin.2016.11.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 354 2017 2 1209-1219 11 045F 510 |
spelling |
10.1016/j.jfranklin.2016.11.022 doi GBVA2017020000028.pica (DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 004 VZ Ding, Liming verfasserin aut A novel delay partitioning method for stability analysis of interval time-varying delay systems 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. He, Yong oth Wu, Min oth Zhang, Zhiming oth Enthalten in Elsevier Science Verma, Kevin ELSEVIER Modeling and simulation of electrophoretic deposition coatings 2020 engineering and applied mathematics Amsterdam [u.a.] (DE-627)ELV003960617 volume:354 year:2017 number:2 pages:1209-1219 extent:11 https://doi.org/10.1016/j.jfranklin.2016.11.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 354 2017 2 1209-1219 11 045F 510 |
allfields_unstemmed |
10.1016/j.jfranklin.2016.11.022 doi GBVA2017020000028.pica (DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 004 VZ Ding, Liming verfasserin aut A novel delay partitioning method for stability analysis of interval time-varying delay systems 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. He, Yong oth Wu, Min oth Zhang, Zhiming oth Enthalten in Elsevier Science Verma, Kevin ELSEVIER Modeling and simulation of electrophoretic deposition coatings 2020 engineering and applied mathematics Amsterdam [u.a.] (DE-627)ELV003960617 volume:354 year:2017 number:2 pages:1209-1219 extent:11 https://doi.org/10.1016/j.jfranklin.2016.11.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 354 2017 2 1209-1219 11 045F 510 |
allfieldsGer |
10.1016/j.jfranklin.2016.11.022 doi GBVA2017020000028.pica (DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 004 VZ Ding, Liming verfasserin aut A novel delay partitioning method for stability analysis of interval time-varying delay systems 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. He, Yong oth Wu, Min oth Zhang, Zhiming oth Enthalten in Elsevier Science Verma, Kevin ELSEVIER Modeling and simulation of electrophoretic deposition coatings 2020 engineering and applied mathematics Amsterdam [u.a.] (DE-627)ELV003960617 volume:354 year:2017 number:2 pages:1209-1219 extent:11 https://doi.org/10.1016/j.jfranklin.2016.11.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 354 2017 2 1209-1219 11 045F 510 |
allfieldsSound |
10.1016/j.jfranklin.2016.11.022 doi GBVA2017020000028.pica (DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 004 VZ Ding, Liming verfasserin aut A novel delay partitioning method for stability analysis of interval time-varying delay systems 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. He, Yong oth Wu, Min oth Zhang, Zhiming oth Enthalten in Elsevier Science Verma, Kevin ELSEVIER Modeling and simulation of electrophoretic deposition coatings 2020 engineering and applied mathematics Amsterdam [u.a.] (DE-627)ELV003960617 volume:354 year:2017 number:2 pages:1209-1219 extent:11 https://doi.org/10.1016/j.jfranklin.2016.11.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 354 2017 2 1209-1219 11 045F 510 |
language |
English |
source |
Enthalten in Modeling and simulation of electrophoretic deposition coatings Amsterdam [u.a.] volume:354 year:2017 number:2 pages:1209-1219 extent:11 |
sourceStr |
Enthalten in Modeling and simulation of electrophoretic deposition coatings Amsterdam [u.a.] volume:354 year:2017 number:2 pages:1209-1219 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Modeling and simulation of electrophoretic deposition coatings |
authorswithroles_txt_mv |
Ding, Liming @@aut@@ He, Yong @@oth@@ Wu, Min @@oth@@ Zhang, Zhiming @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV003960617 |
dewey-sort |
3510 |
id |
ELV036176036 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV036176036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625211142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfranklin.2016.11.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017020000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV036176036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-0032(16)30441-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel delay partitioning method for stability analysis of interval time-varying delay systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Verma, Kevin ELSEVIER</subfield><subfield code="t">Modeling and simulation of electrophoretic deposition coatings</subfield><subfield code="d">2020</subfield><subfield code="d">engineering and applied mathematics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003960617</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:354</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1209-1219</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfranklin.2016.11.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">354</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">1209-1219</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Ding, Liming |
spellingShingle |
Ding, Liming ddc 510 ddc 004 A novel delay partitioning method for stability analysis of interval time-varying delay systems |
authorStr |
Ding, Liming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003960617 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 004 VZ A novel delay partitioning method for stability analysis of interval time-varying delay systems |
topic |
ddc 510 ddc 004 |
topic_unstemmed |
ddc 510 ddc 004 |
topic_browse |
ddc 510 ddc 004 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y h yh m w mw z z zz |
hierarchy_parent_title |
Modeling and simulation of electrophoretic deposition coatings |
hierarchy_parent_id |
ELV003960617 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Modeling and simulation of electrophoretic deposition coatings |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003960617 |
title |
A novel delay partitioning method for stability analysis of interval time-varying delay systems |
ctrlnum |
(DE-627)ELV036176036 (ELSEVIER)S0016-0032(16)30441-0 |
title_full |
A novel delay partitioning method for stability analysis of interval time-varying delay systems |
author_sort |
Ding, Liming |
journal |
Modeling and simulation of electrophoretic deposition coatings |
journalStr |
Modeling and simulation of electrophoretic deposition coatings |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
1209 |
author_browse |
Ding, Liming |
container_volume |
354 |
physical |
11 |
class |
510 510 DE-600 004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Ding, Liming |
doi_str_mv |
10.1016/j.jfranklin.2016.11.022 |
dewey-full |
510 004 |
title_sort |
a novel delay partitioning method for stability analysis of interval time-varying delay systems |
title_auth |
A novel delay partitioning method for stability analysis of interval time-varying delay systems |
abstract |
This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. |
abstractGer |
This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. |
abstract_unstemmed |
This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
2 |
title_short |
A novel delay partitioning method for stability analysis of interval time-varying delay systems |
url |
https://doi.org/10.1016/j.jfranklin.2016.11.022 |
remote_bool |
true |
author2 |
He, Yong Wu, Min Zhang, Zhiming |
author2Str |
He, Yong Wu, Min Zhang, Zhiming |
ppnlink |
ELV003960617 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jfranklin.2016.11.022 |
up_date |
2024-07-06T19:30:41.696Z |
_version_ |
1803859254781673472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV036176036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625211142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfranklin.2016.11.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017020000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV036176036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-0032(16)30441-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel delay partitioning method for stability analysis of interval time-varying delay systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h 2 − h 1 ∈ [ 0 , h 2 ] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Verma, Kevin ELSEVIER</subfield><subfield code="t">Modeling and simulation of electrophoretic deposition coatings</subfield><subfield code="d">2020</subfield><subfield code="d">engineering and applied mathematics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003960617</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:354</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1209-1219</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfranklin.2016.11.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">354</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">1209-1219</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.3988514 |