Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia
The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae inclu...
Ausführliche Beschreibung
Autor*in: |
Rozefelds, Andrew C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: Investigation of supraspinatus muscle architecture following concentric and eccentric training - Kim, Soo Y. ELSEVIER, 2015, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:242 ; year:2017 ; pages:43-57 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.revpalbo.2017.03.001 |
---|
Katalog-ID: |
ELV036233862 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV036233862 | ||
003 | DE-627 | ||
005 | 20230625211402.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.revpalbo.2017.03.001 |2 doi | |
028 | 5 | 2 | |a GBVA2017022000030.pica |
035 | |a (DE-627)ELV036233862 | ||
035 | |a (ELSEVIER)S0034-6667(16)30244-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 550 | |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 796 |q VZ |
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.60 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Rozefelds, Andrew C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
264 | 1 | |c 2017transfer abstract | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. | ||
520 | |a The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. | ||
700 | 1 | |a Milroy, Anita K. |4 oth | |
700 | 1 | |a Dettmann, Mary E. |4 oth | |
700 | 1 | |a Clifford, H. Trevor |4 oth | |
700 | 1 | |a Maksimenko, Anton |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Kim, Soo Y. ELSEVIER |t Investigation of supraspinatus muscle architecture following concentric and eccentric training |d 2015 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV012775401 |
773 | 1 | 8 | |g volume:242 |g year:2017 |g pages:43-57 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.revpalbo.2017.03.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
951 | |a AR | ||
952 | |d 242 |j 2017 |h 43-57 |g 15 | ||
953 | |2 045F |a 550 |
author_variant |
a c r ac acr |
---|---|
matchkey_str |
rozefeldsandrewcmilroyanitakdettmannmary:2017----:ycrtocmuetmgahctcncmlmntaiinlehiusnnesadntenenlntmoprieaiefnancrartnieeu |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
51.60 58.45 |
publishDate |
2017 |
allfields |
10.1016/j.revpalbo.2017.03.001 doi GBVA2017022000030.pica (DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Rozefelds, Andrew C. verfasserin aut Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia 2017transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. Milroy, Anita K. oth Dettmann, Mary E. oth Clifford, H. Trevor oth Maksimenko, Anton oth Enthalten in Elsevier Science Kim, Soo Y. ELSEVIER Investigation of supraspinatus muscle architecture following concentric and eccentric training 2015 an international journal Amsterdam [u.a.] (DE-627)ELV012775401 volume:242 year:2017 pages:43-57 extent:15 https://doi.org/10.1016/j.revpalbo.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 242 2017 43-57 15 045F 550 |
spelling |
10.1016/j.revpalbo.2017.03.001 doi GBVA2017022000030.pica (DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Rozefelds, Andrew C. verfasserin aut Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia 2017transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. Milroy, Anita K. oth Dettmann, Mary E. oth Clifford, H. Trevor oth Maksimenko, Anton oth Enthalten in Elsevier Science Kim, Soo Y. ELSEVIER Investigation of supraspinatus muscle architecture following concentric and eccentric training 2015 an international journal Amsterdam [u.a.] (DE-627)ELV012775401 volume:242 year:2017 pages:43-57 extent:15 https://doi.org/10.1016/j.revpalbo.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 242 2017 43-57 15 045F 550 |
allfields_unstemmed |
10.1016/j.revpalbo.2017.03.001 doi GBVA2017022000030.pica (DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Rozefelds, Andrew C. verfasserin aut Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia 2017transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. Milroy, Anita K. oth Dettmann, Mary E. oth Clifford, H. Trevor oth Maksimenko, Anton oth Enthalten in Elsevier Science Kim, Soo Y. ELSEVIER Investigation of supraspinatus muscle architecture following concentric and eccentric training 2015 an international journal Amsterdam [u.a.] (DE-627)ELV012775401 volume:242 year:2017 pages:43-57 extent:15 https://doi.org/10.1016/j.revpalbo.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 242 2017 43-57 15 045F 550 |
allfieldsGer |
10.1016/j.revpalbo.2017.03.001 doi GBVA2017022000030.pica (DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Rozefelds, Andrew C. verfasserin aut Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia 2017transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. Milroy, Anita K. oth Dettmann, Mary E. oth Clifford, H. Trevor oth Maksimenko, Anton oth Enthalten in Elsevier Science Kim, Soo Y. ELSEVIER Investigation of supraspinatus muscle architecture following concentric and eccentric training 2015 an international journal Amsterdam [u.a.] (DE-627)ELV012775401 volume:242 year:2017 pages:43-57 extent:15 https://doi.org/10.1016/j.revpalbo.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 242 2017 43-57 15 045F 550 |
allfieldsSound |
10.1016/j.revpalbo.2017.03.001 doi GBVA2017022000030.pica (DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Rozefelds, Andrew C. verfasserin aut Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia 2017transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. Milroy, Anita K. oth Dettmann, Mary E. oth Clifford, H. Trevor oth Maksimenko, Anton oth Enthalten in Elsevier Science Kim, Soo Y. ELSEVIER Investigation of supraspinatus muscle architecture following concentric and eccentric training 2015 an international journal Amsterdam [u.a.] (DE-627)ELV012775401 volume:242 year:2017 pages:43-57 extent:15 https://doi.org/10.1016/j.revpalbo.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 242 2017 43-57 15 045F 550 |
language |
English |
source |
Enthalten in Investigation of supraspinatus muscle architecture following concentric and eccentric training Amsterdam [u.a.] volume:242 year:2017 pages:43-57 extent:15 |
sourceStr |
Enthalten in Investigation of supraspinatus muscle architecture following concentric and eccentric training Amsterdam [u.a.] volume:242 year:2017 pages:43-57 extent:15 |
format_phy_str_mv |
Article |
bklname |
Keramische Werkstoffe Hartstoffe Gesteinshüttenkunde |
institution |
findex.gbv.de |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Investigation of supraspinatus muscle architecture following concentric and eccentric training |
authorswithroles_txt_mv |
Rozefelds, Andrew C. @@aut@@ Milroy, Anita K. @@oth@@ Dettmann, Mary E. @@oth@@ Clifford, H. Trevor @@oth@@ Maksimenko, Anton @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV012775401 |
dewey-sort |
3550 |
id |
ELV036233862 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV036233862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625211402.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.revpalbo.2017.03.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017022000030.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV036233862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-6667(16)30244-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozefelds, Andrew C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milroy, Anita K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dettmann, Mary E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clifford, H. Trevor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksimenko, Anton</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kim, Soo Y. ELSEVIER</subfield><subfield code="t">Investigation of supraspinatus muscle architecture following concentric and eccentric training</subfield><subfield code="d">2015</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012775401</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:43-57</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.revpalbo.2017.03.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2017</subfield><subfield code="h">43-57</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
author |
Rozefelds, Andrew C. |
spellingShingle |
Rozefelds, Andrew C. ddc 550 ddc 610 ddc 796 ddc 670 bkl 51.60 bkl 58.45 Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
authorStr |
Rozefelds, Andrew C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012775401 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 610 - Medicine & health 796 - Athletic & outdoor sports & games 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
topic |
ddc 550 ddc 610 ddc 796 ddc 670 bkl 51.60 bkl 58.45 |
topic_unstemmed |
ddc 550 ddc 610 ddc 796 ddc 670 bkl 51.60 bkl 58.45 |
topic_browse |
ddc 550 ddc 610 ddc 796 ddc 670 bkl 51.60 bkl 58.45 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a k m ak akm m e d me med h t c ht htc a m am |
hierarchy_parent_title |
Investigation of supraspinatus muscle architecture following concentric and eccentric training |
hierarchy_parent_id |
ELV012775401 |
dewey-tens |
550 - Earth sciences & geology 610 - Medicine & health 790 - Sports, games & entertainment 670 - Manufacturing |
hierarchy_top_title |
Investigation of supraspinatus muscle architecture following concentric and eccentric training |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012775401 |
title |
Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
ctrlnum |
(DE-627)ELV036233862 (ELSEVIER)S0034-6667(16)30244-5 |
title_full |
Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
author_sort |
Rozefelds, Andrew C. |
journal |
Investigation of supraspinatus muscle architecture following concentric and eccentric training |
journalStr |
Investigation of supraspinatus muscle architecture following concentric and eccentric training |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology 700 - Arts & recreation |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
43 |
author_browse |
Rozefelds, Andrew C. |
container_volume |
242 |
physical |
15 |
class |
550 550 DE-600 610 VZ 796 VZ 670 VZ 51.60 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rozefelds, Andrew C. |
doi_str_mv |
10.1016/j.revpalbo.2017.03.001 |
dewey-full |
550 610 796 670 |
title_sort |
synchrotron computer tomographic (ct) scans complement traditional techniques in understanding the internal anatomy of permineralised fontainocarpa (crotonoideae, euphorbiaceae) fruits from the oligocene of eastern australia |
title_auth |
Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
abstract |
The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. |
abstractGer |
The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. |
abstract_unstemmed |
The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia |
url |
https://doi.org/10.1016/j.revpalbo.2017.03.001 |
remote_bool |
true |
author2 |
Milroy, Anita K. Dettmann, Mary E. Clifford, H. Trevor Maksimenko, Anton |
author2Str |
Milroy, Anita K. Dettmann, Mary E. Clifford, H. Trevor Maksimenko, Anton |
ppnlink |
ELV012775401 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.revpalbo.2017.03.001 |
up_date |
2024-07-06T19:39:36.482Z |
_version_ |
1803859815545438208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV036233862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625211402.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.revpalbo.2017.03.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017022000030.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV036233862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-6667(16)30244-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozefelds, Andrew C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The internal morphology and anatomy of silicified fruits of Fontainocarpa were studied using traditional thin sectioning techniques, SEM and synchrotron computed tomographic (CT) imaging and animations, to enable comparative analyses with extant, indehiscent-fruited genera in the Euphorbiaceae including Fontainea, Aleurites and Hylandia from Australia, and other non-Australian crotonoid genera. Thin sections and sectioning show that the fruits of Fontainocarpa are indehiscent, multicarpellate and usually 3- to 5-loculate, with axial placentation, a single ovule per carpel and the ovules are anatropous and have antitropous curvature. A ventral vascular trace that supplies each ovule is embedded in the bitegmic seed coat. The internal anatomy is therefore consistent with the Euphorbiaceae. Additional characters, including indehiscent fruits, distinctive vascular channels (foramina) that penetrate through the fruit wall into the locule, and thin membranous seed coats are restricted to very few genera in the Euphorbiaceae, but occur together in extant Fontainea. The seed coat in extant Fontainea and fossil Fontainocarpa seeds is membranous, and appears to lack the palisadal exotegmen of most genera in the Euphorbiaceae. Fontainocarpa fruits were compared with those of extant Fontainea and the fossil has a combination of features unlike those of extant taxa. It shares with Fontainea picrosperma in having endocarps with convex intersutural surfaces lacking ornamentation and a similar number of locules and with Fontainea venosa in having conspicuous foramina. This study therefore supports a close relationship between Fontainea and Fontainocarpa and is further evidence of the Crotonoideae in the fossil record in Australia, and is one of the few records of this subfamily worldwide. This study is one of the few, to date, using synchrotron CT imaging to reveal the internal morphology of silicified fruits and to utilize animations to examine the structure of these fruits.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milroy, Anita K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dettmann, Mary E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clifford, H. Trevor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksimenko, Anton</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kim, Soo Y. ELSEVIER</subfield><subfield code="t">Investigation of supraspinatus muscle architecture following concentric and eccentric training</subfield><subfield code="d">2015</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012775401</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:43-57</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.revpalbo.2017.03.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2017</subfield><subfield code="h">43-57</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
score |
7.400222 |