Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling
Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of...
Ausführliche Beschreibung
Autor*in: |
Wei, Zhigang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors - Huang, Botong ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2013 ; pages:126-134 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.probengmech.2013.03.004 |
---|
Katalog-ID: |
ELV038722704 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV038722704 | ||
003 | DE-627 | ||
005 | 20230625223040.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.probengmech.2013.03.004 |2 doi | |
028 | 5 | 2 | |a GBVA2013008000001.pica |
035 | |a (DE-627)ELV038722704 | ||
035 | |a (ELSEVIER)S0266-8920(13)00035-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 670 |q VZ |
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Wei, Zhigang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
264 | 1 | |c 2013transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. | ||
520 | |a Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. | ||
650 | 7 | |a Probabilistic modeling |2 Elsevier | |
650 | 7 | |a Creep–fatigue–oxidation |2 Elsevier | |
650 | 7 | |a Superposition theory |2 Elsevier | |
650 | 7 | |a Monte Carlo simulation |2 Elsevier | |
650 | 7 | |a Crack growth |2 Elsevier | |
700 | 1 | |a Yang, Fulun |4 oth | |
700 | 1 | |a Lin, Burt |4 oth | |
700 | 1 | |a Luo, Limin |4 oth | |
700 | 1 | |a Konson, Dmitri |4 oth | |
700 | 1 | |a Nikbin, Kamran |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Huang, Botong ELSEVIER |t Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV017638305 |
773 | 1 | 8 | |g volume:33 |g year:2013 |g pages:126-134 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.probengmech.2013.03.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 33 |j 2013 |h 126-134 |g 9 | ||
953 | |2 045F |a 620 |
author_variant |
z w zw |
---|---|
matchkey_str |
weizhigangyangfulunlinburtluoliminkonson:2013----:eemnsiadrbblsicepaiuoiain |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2013 |
allfields |
10.1016/j.probengmech.2013.03.004 doi GBVA2013008000001.pica (DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 DE-627 ger DE-627 rakwb eng 620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Wei, Zhigang verfasserin aut Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier Yang, Fulun oth Lin, Burt oth Luo, Limin oth Konson, Dmitri oth Nikbin, Kamran oth Enthalten in Elsevier Science Huang, Botong ELSEVIER Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors 2014 Amsterdam [u.a.] (DE-627)ELV017638305 volume:33 year:2013 pages:126-134 extent:9 https://doi.org/10.1016/j.probengmech.2013.03.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 33 2013 126-134 9 045F 620 |
spelling |
10.1016/j.probengmech.2013.03.004 doi GBVA2013008000001.pica (DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 DE-627 ger DE-627 rakwb eng 620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Wei, Zhigang verfasserin aut Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier Yang, Fulun oth Lin, Burt oth Luo, Limin oth Konson, Dmitri oth Nikbin, Kamran oth Enthalten in Elsevier Science Huang, Botong ELSEVIER Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors 2014 Amsterdam [u.a.] (DE-627)ELV017638305 volume:33 year:2013 pages:126-134 extent:9 https://doi.org/10.1016/j.probengmech.2013.03.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 33 2013 126-134 9 045F 620 |
allfields_unstemmed |
10.1016/j.probengmech.2013.03.004 doi GBVA2013008000001.pica (DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 DE-627 ger DE-627 rakwb eng 620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Wei, Zhigang verfasserin aut Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier Yang, Fulun oth Lin, Burt oth Luo, Limin oth Konson, Dmitri oth Nikbin, Kamran oth Enthalten in Elsevier Science Huang, Botong ELSEVIER Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors 2014 Amsterdam [u.a.] (DE-627)ELV017638305 volume:33 year:2013 pages:126-134 extent:9 https://doi.org/10.1016/j.probengmech.2013.03.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 33 2013 126-134 9 045F 620 |
allfieldsGer |
10.1016/j.probengmech.2013.03.004 doi GBVA2013008000001.pica (DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 DE-627 ger DE-627 rakwb eng 620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Wei, Zhigang verfasserin aut Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier Yang, Fulun oth Lin, Burt oth Luo, Limin oth Konson, Dmitri oth Nikbin, Kamran oth Enthalten in Elsevier Science Huang, Botong ELSEVIER Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors 2014 Amsterdam [u.a.] (DE-627)ELV017638305 volume:33 year:2013 pages:126-134 extent:9 https://doi.org/10.1016/j.probengmech.2013.03.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 33 2013 126-134 9 045F 620 |
allfieldsSound |
10.1016/j.probengmech.2013.03.004 doi GBVA2013008000001.pica (DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 DE-627 ger DE-627 rakwb eng 620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Wei, Zhigang verfasserin aut Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier Yang, Fulun oth Lin, Burt oth Luo, Limin oth Konson, Dmitri oth Nikbin, Kamran oth Enthalten in Elsevier Science Huang, Botong ELSEVIER Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors 2014 Amsterdam [u.a.] (DE-627)ELV017638305 volume:33 year:2013 pages:126-134 extent:9 https://doi.org/10.1016/j.probengmech.2013.03.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 33 2013 126-134 9 045F 620 |
language |
English |
source |
Enthalten in Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors Amsterdam [u.a.] volume:33 year:2013 pages:126-134 extent:9 |
sourceStr |
Enthalten in Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors Amsterdam [u.a.] volume:33 year:2013 pages:126-134 extent:9 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Probabilistic modeling Creep–fatigue–oxidation Superposition theory Monte Carlo simulation Crack growth |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |
authorswithroles_txt_mv |
Wei, Zhigang @@aut@@ Yang, Fulun @@oth@@ Lin, Burt @@oth@@ Luo, Limin @@oth@@ Konson, Dmitri @@oth@@ Nikbin, Kamran @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV017638305 |
dewey-sort |
3620 |
id |
ELV038722704 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV038722704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625223040.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.probengmech.2013.03.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013008000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV038722704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0266-8920(13)00035-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilistic modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Creep–fatigue–oxidation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superposition theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte Carlo simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crack growth</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Burt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Limin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Konson, Dmitri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikbin, Kamran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Huang, Botong ELSEVIER</subfield><subfield code="t">Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017638305</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">pages:126-134</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.probengmech.2013.03.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="h">126-134</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Wei, Zhigang |
spellingShingle |
Wei, Zhigang ddc 620 ddc 530 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
authorStr |
Wei, Zhigang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017638305 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics 670 - Manufacturing 300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth Elsevier |
topic |
ddc 620 ddc 530 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth |
topic_unstemmed |
ddc 620 ddc 530 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth |
topic_browse |
ddc 620 ddc 530 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier Probabilistic modeling Elsevier Creep–fatigue–oxidation Elsevier Superposition theory Elsevier Monte Carlo simulation Elsevier Crack growth |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f y fy b l bl l l ll d k dk k n kn |
hierarchy_parent_title |
Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |
hierarchy_parent_id |
ELV017638305 |
dewey-tens |
620 - Engineering 530 - Physics 670 - Manufacturing 300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017638305 |
title |
Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
ctrlnum |
(DE-627)ELV038722704 (ELSEVIER)S0266-8920(13)00035-0 |
title_full |
Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
author_sort |
Wei, Zhigang |
journal |
Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |
journalStr |
Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
126 |
author_browse |
Wei, Zhigang |
container_volume |
33 |
physical |
9 |
class |
620 620 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Zhigang |
doi_str_mv |
10.1016/j.probengmech.2013.03.004 |
dewey-full |
620 530 670 300 |
title_sort |
deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
title_auth |
Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
abstract |
Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. |
abstractGer |
Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. |
abstract_unstemmed |
Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_70 |
title_short |
Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling |
url |
https://doi.org/10.1016/j.probengmech.2013.03.004 |
remote_bool |
true |
author2 |
Yang, Fulun Lin, Burt Luo, Limin Konson, Dmitri Nikbin, Kamran |
author2Str |
Yang, Fulun Lin, Burt Luo, Limin Konson, Dmitri Nikbin, Kamran |
ppnlink |
ELV017638305 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.probengmech.2013.03.004 |
up_date |
2024-07-06T18:57:07.642Z |
_version_ |
1803857142892986368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV038722704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625223040.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.probengmech.2013.03.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013008000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV038722704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0266-8920(13)00035-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deterministic and probabilistic creep–fatigue–oxidation crack growth modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fatigue, creep, oxidation or their combinations have long been recognized as the principal mechanisms in many high-temperature failures in power plant components, turbine engines, and exhaust systems in vehicles. Depending on the specific materials and loading conditions and temperature, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep–fatigue, fatigue–oxidation, and creep–fatigue–oxidation. In this paper a new linear superposition theory is proposed to model the cycle-dependent and time-dependent creep–fatigue–oxidation crack growth phenomena. The model can be reduced to creep–fatigue and fatigue–oxidation crack growth models previously developed by the authors as well as, under some assumptions, the current widely used linear superposition theory. The limits of the current superposition theory and the advantages of the new theory are clearly demonstrated with several worked examples. A general probabilistic analysis procedure is also proposed by introducing the uncertainties of parameters in fatigue, creep, and oxidation crack growth laws with the help of the Monte Carlo simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilistic modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Creep–fatigue–oxidation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superposition theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte Carlo simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crack growth</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Burt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Limin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Konson, Dmitri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikbin, Kamran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Huang, Botong ELSEVIER</subfield><subfield code="t">Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017638305</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">pages:126-134</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.probengmech.2013.03.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="h">126-134</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.402378 |