Learning-based tuning of supervisory model predictive control for drinking water networks
This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture co...
Ausführliche Beschreibung
Autor*in: |
Grosso, J.M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation - Liu, Xiang ELSEVIER, 2015, the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2013 ; number:7 ; pages:1741-1750 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.engappai.2013.03.003 |
---|
Katalog-ID: |
ELV038896583 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV038896583 | ||
003 | DE-627 | ||
005 | 20230625223448.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2013.03.003 |2 doi | |
028 | 5 | 2 | |a GBVA2013015000007.pica |
035 | |a (DE-627)ELV038896583 | ||
035 | |a (ELSEVIER)S0952-1976(13)00039-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Grosso, J.M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Learning-based tuning of supervisory model predictive control for drinking water networks |
264 | 1 | |c 2013transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. | ||
520 | |a This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. | ||
650 | 7 | |a Model predictive control |2 Elsevier | |
650 | 7 | |a Self-tuning |2 Elsevier | |
650 | 7 | |a Neural networks |2 Elsevier | |
650 | 7 | |a Multilayer controller |2 Elsevier | |
650 | 7 | |a Fuzzy-logic |2 Elsevier | |
650 | 7 | |a Drinking water networks |2 Elsevier | |
700 | 1 | |a Ocampo-Martínez, C. |4 oth | |
700 | 1 | |a Puig, V. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Liu, Xiang ELSEVIER |t Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |d 2015 |d the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control |g Amsterdam [u.a.] |w (DE-627)ELV013402978 |
773 | 1 | 8 | |g volume:26 |g year:2013 |g number:7 |g pages:1741-1750 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.engappai.2013.03.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 26 |j 2013 |e 7 |h 1741-1750 |g 10 | ||
953 | |2 045F |a 004 |
author_variant |
j g jg |
---|---|
matchkey_str |
grossojmocampomartnezcpuigv:2013----:erigaetnnosprioyoepeitvcnrlo |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
44.00 |
publishDate |
2013 |
allfields |
10.1016/j.engappai.2013.03.003 doi GBVA2013015000007.pica (DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Grosso, J.M. verfasserin aut Learning-based tuning of supervisory model predictive control for drinking water networks 2013transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier Ocampo-Martínez, C. oth Puig, V. oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:26 year:2013 number:7 pages:1741-1750 extent:10 https://doi.org/10.1016/j.engappai.2013.03.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 26 2013 7 1741-1750 10 045F 004 |
spelling |
10.1016/j.engappai.2013.03.003 doi GBVA2013015000007.pica (DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Grosso, J.M. verfasserin aut Learning-based tuning of supervisory model predictive control for drinking water networks 2013transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier Ocampo-Martínez, C. oth Puig, V. oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:26 year:2013 number:7 pages:1741-1750 extent:10 https://doi.org/10.1016/j.engappai.2013.03.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 26 2013 7 1741-1750 10 045F 004 |
allfields_unstemmed |
10.1016/j.engappai.2013.03.003 doi GBVA2013015000007.pica (DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Grosso, J.M. verfasserin aut Learning-based tuning of supervisory model predictive control for drinking water networks 2013transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier Ocampo-Martínez, C. oth Puig, V. oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:26 year:2013 number:7 pages:1741-1750 extent:10 https://doi.org/10.1016/j.engappai.2013.03.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 26 2013 7 1741-1750 10 045F 004 |
allfieldsGer |
10.1016/j.engappai.2013.03.003 doi GBVA2013015000007.pica (DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Grosso, J.M. verfasserin aut Learning-based tuning of supervisory model predictive control for drinking water networks 2013transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier Ocampo-Martínez, C. oth Puig, V. oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:26 year:2013 number:7 pages:1741-1750 extent:10 https://doi.org/10.1016/j.engappai.2013.03.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 26 2013 7 1741-1750 10 045F 004 |
allfieldsSound |
10.1016/j.engappai.2013.03.003 doi GBVA2013015000007.pica (DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Grosso, J.M. verfasserin aut Learning-based tuning of supervisory model predictive control for drinking water networks 2013transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier Ocampo-Martínez, C. oth Puig, V. oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:26 year:2013 number:7 pages:1741-1750 extent:10 https://doi.org/10.1016/j.engappai.2013.03.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 26 2013 7 1741-1750 10 045F 004 |
language |
English |
source |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:26 year:2013 number:7 pages:1741-1750 extent:10 |
sourceStr |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:26 year:2013 number:7 pages:1741-1750 extent:10 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Model predictive control Self-tuning Neural networks Multilayer controller Fuzzy-logic Drinking water networks |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
authorswithroles_txt_mv |
Grosso, J.M. @@aut@@ Ocampo-Martínez, C. @@oth@@ Puig, V. @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV013402978 |
dewey-sort |
14 |
id |
ELV038896583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV038896583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625223448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2013.03.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV038896583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(13)00039-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosso, J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning-based tuning of supervisory model predictive control for drinking water networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-tuning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multilayer controller</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy-logic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drinking water networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ocampo-Martínez, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puig, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1741-1750</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2013.03.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">1741-1750</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Grosso, J.M. |
spellingShingle |
Grosso, J.M. ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Learning-based tuning of supervisory model predictive control for drinking water networks |
authorStr |
Grosso, J.M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013402978 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 540 VZ 610 VZ 44.00 bkl Learning-based tuning of supervisory model predictive control for drinking water networks Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks Elsevier |
topic |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks |
topic_unstemmed |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks |
topic_browse |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Model predictive control Elsevier Self-tuning Elsevier Neural networks Elsevier Multilayer controller Elsevier Fuzzy-logic Elsevier Drinking water networks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c o m com v p vp |
hierarchy_parent_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
hierarchy_parent_id |
ELV013402978 |
dewey-tens |
000 - Computer science, knowledge & systems 540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013402978 |
title |
Learning-based tuning of supervisory model predictive control for drinking water networks |
ctrlnum |
(DE-627)ELV038896583 (ELSEVIER)S0952-1976(13)00039-0 |
title_full |
Learning-based tuning of supervisory model predictive control for drinking water networks |
author_sort |
Grosso, J.M. |
journal |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
journalStr |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
1741 |
author_browse |
Grosso, J.M. |
container_volume |
26 |
physical |
10 |
class |
004 004 DE-600 540 VZ 610 VZ 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Grosso, J.M. |
doi_str_mv |
10.1016/j.engappai.2013.03.003 |
dewey-full |
004 540 610 |
title_sort |
learning-based tuning of supervisory model predictive control for drinking water networks |
title_auth |
Learning-based tuning of supervisory model predictive control for drinking water networks |
abstract |
This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. |
abstractGer |
This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. |
abstract_unstemmed |
This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
7 |
title_short |
Learning-based tuning of supervisory model predictive control for drinking water networks |
url |
https://doi.org/10.1016/j.engappai.2013.03.003 |
remote_bool |
true |
author2 |
Ocampo-Martínez, C. Puig, V. |
author2Str |
Ocampo-Martínez, C. Puig, V. |
ppnlink |
ELV013402978 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.engappai.2013.03.003 |
up_date |
2024-07-06T19:20:10.252Z |
_version_ |
1803858592664649728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV038896583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625223448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2013.03.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV038896583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(13)00039-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosso, J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning-based tuning of supervisory model predictive control for drinking water networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-tuning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multilayer controller</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy-logic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drinking water networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ocampo-Martínez, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puig, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1741-1750</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2013.03.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">1741-1750</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.3993597 |