P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network
Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P netw...
Ausführliche Beschreibung
Autor*in: |
Farzanyar, Zahra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? - Kornej, Jelena ELSEVIER, 2015, devoted to the rapid publication of short contributions to information processing, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:113 ; year:2013 ; number:19 ; pages:793-798 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.ipl.2013.07.016 |
---|
Katalog-ID: |
ELV039097196 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039097196 | ||
003 | DE-627 | ||
005 | 20230625224019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ipl.2013.07.016 |2 doi | |
028 | 5 | 2 | |a GBVA2013021000010.pica |
035 | |a (DE-627)ELV039097196 | ||
035 | |a (ELSEVIER)S0020-0190(13)00205-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.80 |2 bkl | ||
100 | 1 | |a Farzanyar, Zahra |e verfasserin |4 aut | |
245 | 1 | 0 | |a P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
264 | 1 | |c 2013transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. | ||
520 | |a Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. | ||
650 | 7 | |a P2P distributed systems |2 Elsevier | |
650 | 7 | |a Data stream |2 Elsevier | |
650 | 7 | |a P2P data mining |2 Elsevier | |
650 | 7 | |a On-line algorithms |2 Elsevier | |
700 | 1 | |a Kangavari, Mohammadreza |4 oth | |
700 | 1 | |a Cercone, Nick |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Kornej, Jelena ELSEVIER |t Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |d 2015 |d devoted to the rapid publication of short contributions to information processing |g Amsterdam [u.a.] |w (DE-627)ELV023909307 |
773 | 1 | 8 | |g volume:113 |g year:2013 |g number:19 |g pages:793-798 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ipl.2013.07.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_77 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_176 | ||
936 | b | k | |a 31.80 |j Angewandte Mathematik |q VZ |
951 | |a AR | ||
952 | |d 113 |j 2013 |e 19 |h 793-798 |g 6 | ||
953 | |2 045F |a 004 |
author_variant |
z f zf |
---|---|
matchkey_str |
farzanyarzahrakangavarimohammadrezacerco:2013----:2fsmnnrcnlfeuniestfodsrbtdaa |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
31.80 |
publishDate |
2013 |
allfields |
10.1016/j.ipl.2013.07.016 doi GBVA2013021000010.pica (DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 510 VZ 31.80 bkl Farzanyar, Zahra verfasserin aut P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier Kangavari, Mohammadreza oth Cercone, Nick oth Enthalten in Elsevier Kornej, Jelena ELSEVIER Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? 2015 devoted to the rapid publication of short contributions to information processing Amsterdam [u.a.] (DE-627)ELV023909307 volume:113 year:2013 number:19 pages:793-798 extent:6 https://doi.org/10.1016/j.ipl.2013.07.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 31.80 Angewandte Mathematik VZ AR 113 2013 19 793-798 6 045F 004 |
spelling |
10.1016/j.ipl.2013.07.016 doi GBVA2013021000010.pica (DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 510 VZ 31.80 bkl Farzanyar, Zahra verfasserin aut P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier Kangavari, Mohammadreza oth Cercone, Nick oth Enthalten in Elsevier Kornej, Jelena ELSEVIER Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? 2015 devoted to the rapid publication of short contributions to information processing Amsterdam [u.a.] (DE-627)ELV023909307 volume:113 year:2013 number:19 pages:793-798 extent:6 https://doi.org/10.1016/j.ipl.2013.07.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 31.80 Angewandte Mathematik VZ AR 113 2013 19 793-798 6 045F 004 |
allfields_unstemmed |
10.1016/j.ipl.2013.07.016 doi GBVA2013021000010.pica (DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 510 VZ 31.80 bkl Farzanyar, Zahra verfasserin aut P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier Kangavari, Mohammadreza oth Cercone, Nick oth Enthalten in Elsevier Kornej, Jelena ELSEVIER Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? 2015 devoted to the rapid publication of short contributions to information processing Amsterdam [u.a.] (DE-627)ELV023909307 volume:113 year:2013 number:19 pages:793-798 extent:6 https://doi.org/10.1016/j.ipl.2013.07.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 31.80 Angewandte Mathematik VZ AR 113 2013 19 793-798 6 045F 004 |
allfieldsGer |
10.1016/j.ipl.2013.07.016 doi GBVA2013021000010.pica (DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 510 VZ 31.80 bkl Farzanyar, Zahra verfasserin aut P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier Kangavari, Mohammadreza oth Cercone, Nick oth Enthalten in Elsevier Kornej, Jelena ELSEVIER Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? 2015 devoted to the rapid publication of short contributions to information processing Amsterdam [u.a.] (DE-627)ELV023909307 volume:113 year:2013 number:19 pages:793-798 extent:6 https://doi.org/10.1016/j.ipl.2013.07.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 31.80 Angewandte Mathematik VZ AR 113 2013 19 793-798 6 045F 004 |
allfieldsSound |
10.1016/j.ipl.2013.07.016 doi GBVA2013021000010.pica (DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 510 VZ 31.80 bkl Farzanyar, Zahra verfasserin aut P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier Kangavari, Mohammadreza oth Cercone, Nick oth Enthalten in Elsevier Kornej, Jelena ELSEVIER Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? 2015 devoted to the rapid publication of short contributions to information processing Amsterdam [u.a.] (DE-627)ELV023909307 volume:113 year:2013 number:19 pages:793-798 extent:6 https://doi.org/10.1016/j.ipl.2013.07.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 31.80 Angewandte Mathematik VZ AR 113 2013 19 793-798 6 045F 004 |
language |
English |
source |
Enthalten in Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? Amsterdam [u.a.] volume:113 year:2013 number:19 pages:793-798 extent:6 |
sourceStr |
Enthalten in Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? Amsterdam [u.a.] volume:113 year:2013 number:19 pages:793-798 extent:6 |
format_phy_str_mv |
Article |
bklname |
Angewandte Mathematik |
institution |
findex.gbv.de |
topic_facet |
P2P distributed systems Data stream P2P data mining On-line algorithms |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |
authorswithroles_txt_mv |
Farzanyar, Zahra @@aut@@ Kangavari, Mohammadreza @@oth@@ Cercone, Nick @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV023909307 |
dewey-sort |
14 |
id |
ELV039097196 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039097196</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ipl.2013.07.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013021000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039097196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0190(13)00205-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farzanyar, Zahra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P2P distributed systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data stream</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P2P data mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">On-line algorithms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kangavari, Mohammadreza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cercone, Nick</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kornej, Jelena ELSEVIER</subfield><subfield code="t">Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander?</subfield><subfield code="d">2015</subfield><subfield code="d">devoted to the rapid publication of short contributions to information processing</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV023909307</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:113</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:793-798</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ipl.2013.07.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_176</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">113</subfield><subfield code="j">2013</subfield><subfield code="e">19</subfield><subfield code="h">793-798</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Farzanyar, Zahra |
spellingShingle |
Farzanyar, Zahra ddc 004 ddc 610 ddc 510 bkl 31.80 Elsevier P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
authorStr |
Farzanyar, Zahra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV023909307 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 610 - Medicine & health 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 610 VZ 510 VZ 31.80 bkl P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms Elsevier |
topic |
ddc 004 ddc 610 ddc 510 bkl 31.80 Elsevier P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms |
topic_unstemmed |
ddc 004 ddc 610 ddc 510 bkl 31.80 Elsevier P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms |
topic_browse |
ddc 004 ddc 610 ddc 510 bkl 31.80 Elsevier P2P distributed systems Elsevier Data stream Elsevier P2P data mining Elsevier On-line algorithms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m k mk n c nc |
hierarchy_parent_title |
Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |
hierarchy_parent_id |
ELV023909307 |
dewey-tens |
000 - Computer science, knowledge & systems 610 - Medicine & health 510 - Mathematics |
hierarchy_top_title |
Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV023909307 |
title |
P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
ctrlnum |
(DE-627)ELV039097196 (ELSEVIER)S0020-0190(13)00205-6 |
title_full |
P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
author_sort |
Farzanyar, Zahra |
journal |
Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |
journalStr |
Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
793 |
author_browse |
Farzanyar, Zahra |
container_volume |
113 |
physical |
6 |
class |
004 004 DE-600 610 VZ 510 VZ 31.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Farzanyar, Zahra |
doi_str_mv |
10.1016/j.ipl.2013.07.016 |
dewey-full |
004 610 510 |
title_sort |
p2p-fism: mining (recently) frequent item sets from distributed data streams over p2p network |
title_auth |
P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
abstract |
Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. |
abstractGer |
Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. |
abstract_unstemmed |
Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_72 GBV_ILN_77 GBV_ILN_110 GBV_ILN_120 GBV_ILN_176 |
container_issue |
19 |
title_short |
P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network |
url |
https://doi.org/10.1016/j.ipl.2013.07.016 |
remote_bool |
true |
author2 |
Kangavari, Mohammadreza Cercone, Nick |
author2Str |
Kangavari, Mohammadreza Cercone, Nick |
ppnlink |
ELV023909307 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.ipl.2013.07.016 |
up_date |
2024-07-06T19:47:08.023Z |
_version_ |
1803860289020493824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039097196</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ipl.2013.07.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013021000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039097196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0190(13)00205-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farzanyar, Zahra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P2P-FISM: Mining (recently) frequent item sets from distributed data streams over P2P network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data intensive large-scale distributed systems like peer-to-peer (P2P) networks are finding large number of applications for social networking, file sharing networks, etc. Global data mining in such P2P environments may be very costly due to the high scale and the asynchronous nature of the P2P networks. The cost further increases in the distributed data stream scenario where peers receive continuous sequence of transactions rapidly. In this paper, we develop an efficient local algorithm, P2P-FISM, for discovering of the network-wide recent frequent itemsets. The algorithm works in a completely asynchronous manner, imposes low communication overhead, a necessity for scalability, transparently tolerates network topology changes, and quickly adapts to changes in the data stream. The paper demonstrates experimental results to corroborate the theoretical claims.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P2P distributed systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data stream</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P2P data mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">On-line algorithms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kangavari, Mohammadreza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cercone, Nick</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kornej, Jelena ELSEVIER</subfield><subfield code="t">Galectin-3 in Atrial Fibrillation: A Novel Marker of Atrial Remodeling or Just Bystander?</subfield><subfield code="d">2015</subfield><subfield code="d">devoted to the rapid publication of short contributions to information processing</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV023909307</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:113</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:793-798</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ipl.2013.07.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_176</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">113</subfield><subfield code="j">2013</subfield><subfield code="e">19</subfield><subfield code="h">793-798</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.399441 |