Computational homogenization of elastic–plastic composites
This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative vol...
Ausführliche Beschreibung
Autor*in: |
Khdir, Y.K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose - Cooray, M.C. Dilusha ELSEVIER, 2015, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2013 ; number:18 ; day:15 ; month:08 ; pages:2829-2835 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.ijsolstr.2013.03.019 |
---|
Katalog-ID: |
ELV039106756 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039106756 | ||
003 | DE-627 | ||
005 | 20230625224042.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijsolstr.2013.03.019 |2 doi | |
028 | 5 | 2 | |a GBVA2013021000018.pica |
035 | |a (DE-627)ELV039106756 | ||
035 | |a (ELSEVIER)S0020-7683(13)00128-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.10 |2 bkl | ||
100 | 1 | |a Khdir, Y.K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational homogenization of elastic–plastic composites |
264 | 1 | |c 2013transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. | ||
520 | |a This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. | ||
650 | 7 | |a Representative volume element |2 Elsevier | |
650 | 7 | |a Computational homogenization |2 Elsevier | |
650 | 7 | |a Finite element modeling |2 Elsevier | |
650 | 7 | |a Elastic–plastic composites |2 Elsevier | |
700 | 1 | |a Kanit, T. |4 oth | |
700 | 1 | |a Zaïri, F. |4 oth | |
700 | 1 | |a Naït-Abdelaziz, M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Cooray, M.C. Dilusha ELSEVIER |t One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |d 2015 |g New York, NY [u.a.] |w (DE-627)ELV023913754 |
773 | 1 | 8 | |g volume:50 |g year:2013 |g number:18 |g day:15 |g month:08 |g pages:2829-2835 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijsolstr.2013.03.019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 35.10 |j Physikalische Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 50 |j 2013 |e 18 |b 15 |c 0815 |h 2829-2835 |g 7 | ||
953 | |2 045F |a 530 |
author_variant |
y k yk |
---|---|
matchkey_str |
khdirykkanittzarifnatabdelazizm:2013----:opttoahmgnztooeatcl |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
35.10 |
publishDate |
2013 |
allfields |
10.1016/j.ijsolstr.2013.03.019 doi GBVA2013021000018.pica (DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 DE-627 ger DE-627 rakwb eng 530 530 DE-600 540 VZ 610 VZ 540 VZ 35.10 bkl Khdir, Y.K. verfasserin aut Computational homogenization of elastic–plastic composites 2013transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier Kanit, T. oth Zaïri, F. oth Naït-Abdelaziz, M. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 https://doi.org/10.1016/j.ijsolstr.2013.03.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 50 2013 18 15 0815 2829-2835 7 045F 530 |
spelling |
10.1016/j.ijsolstr.2013.03.019 doi GBVA2013021000018.pica (DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 DE-627 ger DE-627 rakwb eng 530 530 DE-600 540 VZ 610 VZ 540 VZ 35.10 bkl Khdir, Y.K. verfasserin aut Computational homogenization of elastic–plastic composites 2013transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier Kanit, T. oth Zaïri, F. oth Naït-Abdelaziz, M. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 https://doi.org/10.1016/j.ijsolstr.2013.03.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 50 2013 18 15 0815 2829-2835 7 045F 530 |
allfields_unstemmed |
10.1016/j.ijsolstr.2013.03.019 doi GBVA2013021000018.pica (DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 DE-627 ger DE-627 rakwb eng 530 530 DE-600 540 VZ 610 VZ 540 VZ 35.10 bkl Khdir, Y.K. verfasserin aut Computational homogenization of elastic–plastic composites 2013transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier Kanit, T. oth Zaïri, F. oth Naït-Abdelaziz, M. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 https://doi.org/10.1016/j.ijsolstr.2013.03.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 50 2013 18 15 0815 2829-2835 7 045F 530 |
allfieldsGer |
10.1016/j.ijsolstr.2013.03.019 doi GBVA2013021000018.pica (DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 DE-627 ger DE-627 rakwb eng 530 530 DE-600 540 VZ 610 VZ 540 VZ 35.10 bkl Khdir, Y.K. verfasserin aut Computational homogenization of elastic–plastic composites 2013transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier Kanit, T. oth Zaïri, F. oth Naït-Abdelaziz, M. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 https://doi.org/10.1016/j.ijsolstr.2013.03.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 50 2013 18 15 0815 2829-2835 7 045F 530 |
allfieldsSound |
10.1016/j.ijsolstr.2013.03.019 doi GBVA2013021000018.pica (DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 DE-627 ger DE-627 rakwb eng 530 530 DE-600 540 VZ 610 VZ 540 VZ 35.10 bkl Khdir, Y.K. verfasserin aut Computational homogenization of elastic–plastic composites 2013transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier Kanit, T. oth Zaïri, F. oth Naït-Abdelaziz, M. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 https://doi.org/10.1016/j.ijsolstr.2013.03.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 50 2013 18 15 0815 2829-2835 7 045F 530 |
language |
English |
source |
Enthalten in One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose New York, NY [u.a.] volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 |
sourceStr |
Enthalten in One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose New York, NY [u.a.] volume:50 year:2013 number:18 day:15 month:08 pages:2829-2835 extent:7 |
format_phy_str_mv |
Article |
bklname |
Physikalische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Representative volume element Computational homogenization Finite element modeling Elastic–plastic composites |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
authorswithroles_txt_mv |
Khdir, Y.K. @@aut@@ Kanit, T. @@oth@@ Zaïri, F. @@oth@@ Naït-Abdelaziz, M. @@oth@@ |
publishDateDaySort_date |
2013-01-15T00:00:00Z |
hierarchy_top_id |
ELV023913754 |
dewey-sort |
3530 |
id |
ELV039106756 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039106756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2013.03.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013021000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039106756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(13)00128-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khdir, Y.K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational homogenization of elastic–plastic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representative volume element</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational homogenization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic–plastic composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanit, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaïri, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naït-Abdelaziz, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cooray, M.C. Dilusha ELSEVIER</subfield><subfield code="t">One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV023913754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:18</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2829-2835</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijsolstr.2013.03.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2013</subfield><subfield code="e">18</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">2829-2835</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Khdir, Y.K. |
spellingShingle |
Khdir, Y.K. ddc 530 ddc 540 ddc 610 bkl 35.10 Elsevier Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Computational homogenization of elastic–plastic composites |
authorStr |
Khdir, Y.K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV023913754 |
format |
electronic Article |
dewey-ones |
530 - Physics 540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 540 VZ 610 VZ 35.10 bkl Computational homogenization of elastic–plastic composites Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites Elsevier |
topic |
ddc 530 ddc 540 ddc 610 bkl 35.10 Elsevier Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites |
topic_unstemmed |
ddc 530 ddc 540 ddc 610 bkl 35.10 Elsevier Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites |
topic_browse |
ddc 530 ddc 540 ddc 610 bkl 35.10 Elsevier Representative volume element Elsevier Computational homogenization Elsevier Finite element modeling Elsevier Elastic–plastic composites |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t k tk f z fz m n a mna |
hierarchy_parent_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
hierarchy_parent_id |
ELV023913754 |
dewey-tens |
530 - Physics 540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV023913754 |
title |
Computational homogenization of elastic–plastic composites |
ctrlnum |
(DE-627)ELV039106756 (ELSEVIER)S0020-7683(13)00128-5 |
title_full |
Computational homogenization of elastic–plastic composites |
author_sort |
Khdir, Y.K. |
journal |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
journalStr |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
2829 |
author_browse |
Khdir, Y.K. |
container_volume |
50 |
physical |
7 |
class |
530 530 DE-600 540 VZ 610 VZ 35.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khdir, Y.K. |
doi_str_mv |
10.1016/j.ijsolstr.2013.03.019 |
dewey-full |
530 540 610 |
title_sort |
computational homogenization of elastic–plastic composites |
title_auth |
Computational homogenization of elastic–plastic composites |
abstract |
This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. |
abstractGer |
This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. |
abstract_unstemmed |
This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 |
container_issue |
18 |
title_short |
Computational homogenization of elastic–plastic composites |
url |
https://doi.org/10.1016/j.ijsolstr.2013.03.019 |
remote_bool |
true |
author2 |
Kanit, T. Zaïri, F. Naït-Abdelaziz, M. |
author2Str |
Kanit, T. Zaïri, F. Naït-Abdelaziz, M. |
ppnlink |
ELV023913754 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.ijsolstr.2013.03.019 |
up_date |
2024-07-06T19:48:36.209Z |
_version_ |
1803860381489168384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039106756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2013.03.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013021000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039106756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(13)00128-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khdir, Y.K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational homogenization of elastic–plastic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work describes a computational homogenization methodology to estimate the effective elastic–plastic response of random two-phase composite media. It is based on finite element simulations using three-dimensional cubic cells of different size but smaller than the deterministic representative volume element (DRVE) of the microstructure. We propose to extend the approach developed in the case of elastic heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) to elastic–plastic composites. A specific polymer blend, made of two phases with highly contrasted properties, is selected to illustrate this approach; it consists of a random dispersion of elastic rubber spheres in an elastic–plastic glassy polymer matrix. It is found that the effective elastic–plastic response of this particulate composite can be accurately determined by computing a sufficient number of small subvolumes of fixed size extracted from the DRVE and containing different realizations of the random microstructure. In addition, the response of an individual subvolume is found anisotropic whereas the average of all subvolumes leads to recover the isotropic character of the DRVE. The necessary realization number to reach acceptable precision is given for two examples of particle volume fractions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representative volume element</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational homogenization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic–plastic composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanit, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaïri, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naït-Abdelaziz, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cooray, M.C. Dilusha ELSEVIER</subfield><subfield code="t">One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV023913754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:18</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2829-2835</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijsolstr.2013.03.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2013</subfield><subfield code="e">18</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">2829-2835</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.401143 |