Rayleigh waves with impedance boundary conditions in anisotropic solids
The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For t...
Ausführliche Beschreibung
Autor*in: |
Vinh, Pham Chi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Atomistic study of three-leg molecular devices - Mahmoud, Ahmed ELSEVIER, 2015, an international journal reporting research on wave phenomena, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2014 ; number:7 ; pages:1082-1092 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.wavemoti.2014.05.002 |
---|
Katalog-ID: |
ELV039206688 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039206688 | ||
003 | DE-627 | ||
005 | 20230625224320.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.wavemoti.2014.05.002 |2 doi | |
028 | 5 | 2 | |a GBVA2014004000020.pica |
035 | |a (DE-627)ELV039206688 | ||
035 | |a (ELSEVIER)S0165-2125(14)00064-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 670 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Vinh, Pham Chi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rayleigh waves with impedance boundary conditions in anisotropic solids |
264 | 1 | |c 2014transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. | ||
520 | |a The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. | ||
650 | 7 | |a Monoclinic |2 Elsevier | |
650 | 7 | |a Explicit secular equation |2 Elsevier | |
650 | 7 | |a Rayleigh waves |2 Elsevier | |
650 | 7 | |a Orthotropic |2 Elsevier | |
650 | 7 | |a Impedance boundary conditions |2 Elsevier | |
700 | 1 | |a Thanh Hue, Trinh Thi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ |a Mahmoud, Ahmed ELSEVIER |t Atomistic study of three-leg molecular devices |d 2015 |d an international journal reporting research on wave phenomena |g Amsterdam |w (DE-627)ELV018330797 |
773 | 1 | 8 | |g volume:51 |g year:2014 |g number:7 |g pages:1082-1092 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.wavemoti.2014.05.002 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2027 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 51 |j 2014 |e 7 |h 1082-1092 |g 11 | ||
953 | |2 045F |a 530 |
author_variant |
p c v pc pcv |
---|---|
matchkey_str |
vinhphamchithanhhuetrinhthi:2014----:alihaewtipdneonayodtos |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
35.00 |
publishDate |
2014 |
allfields |
10.1016/j.wavemoti.2014.05.002 doi GBVA2014004000020.pica (DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 540 VZ 35.00 bkl Vinh, Pham Chi verfasserin aut Rayleigh waves with impedance boundary conditions in anisotropic solids 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier Thanh Hue, Trinh Thi oth Enthalten in North-Holland Publ Mahmoud, Ahmed ELSEVIER Atomistic study of three-leg molecular devices 2015 an international journal reporting research on wave phenomena Amsterdam (DE-627)ELV018330797 volume:51 year:2014 number:7 pages:1082-1092 extent:11 https://doi.org/10.1016/j.wavemoti.2014.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 35.00 Chemie: Allgemeines VZ AR 51 2014 7 1082-1092 11 045F 530 |
spelling |
10.1016/j.wavemoti.2014.05.002 doi GBVA2014004000020.pica (DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 540 VZ 35.00 bkl Vinh, Pham Chi verfasserin aut Rayleigh waves with impedance boundary conditions in anisotropic solids 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier Thanh Hue, Trinh Thi oth Enthalten in North-Holland Publ Mahmoud, Ahmed ELSEVIER Atomistic study of three-leg molecular devices 2015 an international journal reporting research on wave phenomena Amsterdam (DE-627)ELV018330797 volume:51 year:2014 number:7 pages:1082-1092 extent:11 https://doi.org/10.1016/j.wavemoti.2014.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 35.00 Chemie: Allgemeines VZ AR 51 2014 7 1082-1092 11 045F 530 |
allfields_unstemmed |
10.1016/j.wavemoti.2014.05.002 doi GBVA2014004000020.pica (DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 540 VZ 35.00 bkl Vinh, Pham Chi verfasserin aut Rayleigh waves with impedance boundary conditions in anisotropic solids 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier Thanh Hue, Trinh Thi oth Enthalten in North-Holland Publ Mahmoud, Ahmed ELSEVIER Atomistic study of three-leg molecular devices 2015 an international journal reporting research on wave phenomena Amsterdam (DE-627)ELV018330797 volume:51 year:2014 number:7 pages:1082-1092 extent:11 https://doi.org/10.1016/j.wavemoti.2014.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 35.00 Chemie: Allgemeines VZ AR 51 2014 7 1082-1092 11 045F 530 |
allfieldsGer |
10.1016/j.wavemoti.2014.05.002 doi GBVA2014004000020.pica (DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 540 VZ 35.00 bkl Vinh, Pham Chi verfasserin aut Rayleigh waves with impedance boundary conditions in anisotropic solids 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier Thanh Hue, Trinh Thi oth Enthalten in North-Holland Publ Mahmoud, Ahmed ELSEVIER Atomistic study of three-leg molecular devices 2015 an international journal reporting research on wave phenomena Amsterdam (DE-627)ELV018330797 volume:51 year:2014 number:7 pages:1082-1092 extent:11 https://doi.org/10.1016/j.wavemoti.2014.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 35.00 Chemie: Allgemeines VZ AR 51 2014 7 1082-1092 11 045F 530 |
allfieldsSound |
10.1016/j.wavemoti.2014.05.002 doi GBVA2014004000020.pica (DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 540 VZ 35.00 bkl Vinh, Pham Chi verfasserin aut Rayleigh waves with impedance boundary conditions in anisotropic solids 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier Thanh Hue, Trinh Thi oth Enthalten in North-Holland Publ Mahmoud, Ahmed ELSEVIER Atomistic study of three-leg molecular devices 2015 an international journal reporting research on wave phenomena Amsterdam (DE-627)ELV018330797 volume:51 year:2014 number:7 pages:1082-1092 extent:11 https://doi.org/10.1016/j.wavemoti.2014.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 35.00 Chemie: Allgemeines VZ AR 51 2014 7 1082-1092 11 045F 530 |
language |
English |
source |
Enthalten in Atomistic study of three-leg molecular devices Amsterdam volume:51 year:2014 number:7 pages:1082-1092 extent:11 |
sourceStr |
Enthalten in Atomistic study of three-leg molecular devices Amsterdam volume:51 year:2014 number:7 pages:1082-1092 extent:11 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Monoclinic Explicit secular equation Rayleigh waves Orthotropic Impedance boundary conditions |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Atomistic study of three-leg molecular devices |
authorswithroles_txt_mv |
Vinh, Pham Chi @@aut@@ Thanh Hue, Trinh Thi @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV018330797 |
dewey-sort |
3530 |
id |
ELV039206688 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039206688</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wavemoti.2014.05.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039206688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-2125(14)00064-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vinh, Pham Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rayleigh waves with impedance boundary conditions in anisotropic solids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monoclinic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Explicit secular equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rayleigh waves</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthotropic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impedance boundary conditions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thanh Hue, Trinh Thi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Mahmoud, Ahmed ELSEVIER</subfield><subfield code="t">Atomistic study of three-leg molecular devices</subfield><subfield code="d">2015</subfield><subfield code="d">an international journal reporting research on wave phenomena</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV018330797</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1082-1092</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wavemoti.2014.05.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2014</subfield><subfield code="e">7</subfield><subfield code="h">1082-1092</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Vinh, Pham Chi |
spellingShingle |
Vinh, Pham Chi ddc 530 ddc 670 ddc 540 bkl 35.00 Elsevier Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Rayleigh waves with impedance boundary conditions in anisotropic solids |
authorStr |
Vinh, Pham Chi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV018330797 |
format |
electronic Article |
dewey-ones |
530 - Physics 670 - Manufacturing 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 670 VZ 540 VZ 35.00 bkl Rayleigh waves with impedance boundary conditions in anisotropic solids Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions Elsevier |
topic |
ddc 530 ddc 670 ddc 540 bkl 35.00 Elsevier Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions |
topic_unstemmed |
ddc 530 ddc 670 ddc 540 bkl 35.00 Elsevier Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions |
topic_browse |
ddc 530 ddc 670 ddc 540 bkl 35.00 Elsevier Monoclinic Elsevier Explicit secular equation Elsevier Rayleigh waves Elsevier Orthotropic Elsevier Impedance boundary conditions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h t t t htt httt |
hierarchy_parent_title |
Atomistic study of three-leg molecular devices |
hierarchy_parent_id |
ELV018330797 |
dewey-tens |
530 - Physics 670 - Manufacturing 540 - Chemistry |
hierarchy_top_title |
Atomistic study of three-leg molecular devices |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV018330797 |
title |
Rayleigh waves with impedance boundary conditions in anisotropic solids |
ctrlnum |
(DE-627)ELV039206688 (ELSEVIER)S0165-2125(14)00064-X |
title_full |
Rayleigh waves with impedance boundary conditions in anisotropic solids |
author_sort |
Vinh, Pham Chi |
journal |
Atomistic study of three-leg molecular devices |
journalStr |
Atomistic study of three-leg molecular devices |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
1082 |
author_browse |
Vinh, Pham Chi |
container_volume |
51 |
physical |
11 |
class |
530 530 DE-600 670 VZ 540 VZ 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Vinh, Pham Chi |
doi_str_mv |
10.1016/j.wavemoti.2014.05.002 |
dewey-full |
530 670 540 |
title_sort |
rayleigh waves with impedance boundary conditions in anisotropic solids |
title_auth |
Rayleigh waves with impedance boundary conditions in anisotropic solids |
abstract |
The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. |
abstractGer |
The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. |
abstract_unstemmed |
The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_2027 |
container_issue |
7 |
title_short |
Rayleigh waves with impedance boundary conditions in anisotropic solids |
url |
https://doi.org/10.1016/j.wavemoti.2014.05.002 |
remote_bool |
true |
author2 |
Thanh Hue, Trinh Thi |
author2Str |
Thanh Hue, Trinh Thi |
ppnlink |
ELV018330797 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.wavemoti.2014.05.002 |
up_date |
2024-07-06T20:02:52.854Z |
_version_ |
1803861279746555904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039206688</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wavemoti.2014.05.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039206688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-2125(14)00064-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vinh, Pham Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rayleigh waves with impedance boundary conditions in anisotropic solids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x 3 = 0 . The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monoclinic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Explicit secular equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rayleigh waves</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthotropic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impedance boundary conditions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thanh Hue, Trinh Thi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Mahmoud, Ahmed ELSEVIER</subfield><subfield code="t">Atomistic study of three-leg molecular devices</subfield><subfield code="d">2015</subfield><subfield code="d">an international journal reporting research on wave phenomena</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV018330797</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1082-1092</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wavemoti.2014.05.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2014</subfield><subfield code="e">7</subfield><subfield code="h">1082-1092</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.3990116 |