Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes
Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a pro...
Ausführliche Beschreibung
Autor*in: |
Özbudak, Ferruh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
Simultaneous polynomial reconstruction |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries - Schweiss, Rüdiger ELSEVIER, 2015transfer abstract, the journal of the EATCS, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:520 ; year:2014 ; day:6 ; month:02 ; pages:111-123 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.tcs.2013.10.025 |
---|
Katalog-ID: |
ELV039336867 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039336867 | ||
003 | DE-627 | ||
005 | 20230625224645.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tcs.2013.10.025 |2 doi | |
028 | 5 | 2 | |a GBVA2014010000025.pica |
035 | |a (DE-627)ELV039336867 | ||
035 | |a (ELSEVIER)S0304-3975(13)00805-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Özbudak, Ferruh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
264 | 1 | |c 2014transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. | ||
520 | |a Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. | ||
650 | 7 | |a Simultaneous polynomial reconstruction |2 Elsevier | |
650 | 7 | |a Interleaved Reed–Solomon codes |2 Elsevier | |
650 | 7 | |a Reed–Solomon codes |2 Elsevier | |
650 | 7 | |a Folded Hermitian codes |2 Elsevier | |
700 | 1 | |a Yayla, Oğuz |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Schweiss, Rüdiger ELSEVIER |t Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |d 2015transfer abstract |d the journal of the EATCS |g Amsterdam [u.a.] |w (DE-627)ELV013125583 |
773 | 1 | 8 | |g volume:520 |g year:2014 |g day:6 |g month:02 |g pages:111-123 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.tcs.2013.10.025 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 520 |j 2014 |b 6 |c 0206 |h 111-123 |g 13 | ||
953 | |2 045F |a 004 |
author_variant |
f ö fö |
---|---|
matchkey_str |
zbudakferruhyaylaouz:2014----:mrvdrbblsidcdnoitrevdedooocdsn |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
50.92 |
publishDate |
2014 |
allfields |
10.1016/j.tcs.2013.10.025 doi GBVA2014010000025.pica (DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Özbudak, Ferruh verfasserin aut Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes 2014transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier Yayla, Oğuz oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 https://doi.org/10.1016/j.tcs.2013.10.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 520 2014 6 0206 111-123 13 045F 004 |
spelling |
10.1016/j.tcs.2013.10.025 doi GBVA2014010000025.pica (DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Özbudak, Ferruh verfasserin aut Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes 2014transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier Yayla, Oğuz oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 https://doi.org/10.1016/j.tcs.2013.10.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 520 2014 6 0206 111-123 13 045F 004 |
allfields_unstemmed |
10.1016/j.tcs.2013.10.025 doi GBVA2014010000025.pica (DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Özbudak, Ferruh verfasserin aut Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes 2014transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier Yayla, Oğuz oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 https://doi.org/10.1016/j.tcs.2013.10.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 520 2014 6 0206 111-123 13 045F 004 |
allfieldsGer |
10.1016/j.tcs.2013.10.025 doi GBVA2014010000025.pica (DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Özbudak, Ferruh verfasserin aut Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes 2014transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier Yayla, Oğuz oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 https://doi.org/10.1016/j.tcs.2013.10.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 520 2014 6 0206 111-123 13 045F 004 |
allfieldsSound |
10.1016/j.tcs.2013.10.025 doi GBVA2014010000025.pica (DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Özbudak, Ferruh verfasserin aut Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes 2014transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier Yayla, Oğuz oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 https://doi.org/10.1016/j.tcs.2013.10.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 520 2014 6 0206 111-123 13 045F 004 |
language |
English |
source |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 |
sourceStr |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:520 year:2014 day:6 month:02 pages:111-123 extent:13 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Simultaneous polynomial reconstruction Interleaved Reed–Solomon codes Reed–Solomon codes Folded Hermitian codes |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
authorswithroles_txt_mv |
Özbudak, Ferruh @@aut@@ Yayla, Oğuz @@oth@@ |
publishDateDaySort_date |
2014-01-06T00:00:00Z |
hierarchy_top_id |
ELV013125583 |
dewey-sort |
14 |
id |
ELV039336867 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039336867</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2013.10.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039336867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(13)00805-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Özbudak, Ferruh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simultaneous polynomial reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interleaved Reed–Solomon codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reed–Solomon codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Folded Hermitian codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yayla, Oğuz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:520</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:6</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:111-123</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2013.10.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">520</subfield><subfield code="j">2014</subfield><subfield code="b">6</subfield><subfield code="c">0206</subfield><subfield code="h">111-123</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Özbudak, Ferruh |
spellingShingle |
Özbudak, Ferruh ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
authorStr |
Özbudak, Ferruh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013125583 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes Elsevier |
topic |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes |
topic_unstemmed |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes |
topic_browse |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Simultaneous polynomial reconstruction Elsevier Interleaved Reed–Solomon codes Elsevier Reed–Solomon codes Elsevier Folded Hermitian codes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
o y oy |
hierarchy_parent_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
hierarchy_parent_id |
ELV013125583 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013125583 |
title |
Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
ctrlnum |
(DE-627)ELV039336867 (ELSEVIER)S0304-3975(13)00805-0 |
title_full |
Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
author_sort |
Özbudak, Ferruh |
journal |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
journalStr |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
111 |
author_browse |
Özbudak, Ferruh |
container_volume |
520 |
physical |
13 |
class |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Özbudak, Ferruh |
doi_str_mv |
10.1016/j.tcs.2013.10.025 |
dewey-full |
004 620 690 |
title_sort |
improved probabilistic decoding of interleaved reed–solomon codes and folded hermitian codes |
title_auth |
Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
abstract |
Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. |
abstractGer |
Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. |
abstract_unstemmed |
Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 |
title_short |
Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes |
url |
https://doi.org/10.1016/j.tcs.2013.10.025 |
remote_bool |
true |
author2 |
Yayla, Oğuz |
author2Str |
Yayla, Oğuz |
ppnlink |
ELV013125583 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.tcs.2013.10.025 |
up_date |
2024-07-06T20:21:59.211Z |
_version_ |
1803862481788993536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039336867</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625224645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2013.10.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039336867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(13)00805-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Özbudak, Ferruh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved probabilistic decoding of interleaved Reed–Solomon codes and folded Hermitian codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher, Kiayias, and Yung is extended to the polynomials whose degrees are allowed to be distinct. Specifically, for a finite field F , positive integers n, r, t and distinct elements z 1 , z 2 , … , z n ∈ F , we present a probabilistic algorithm which can recover polynomials p 1 , p 2 , … , p r ∈ F [ x ] of degree less than k 1 , k 2 , … , k r respectively for a given instance 〈 y i , 1 , … , y i , r 〉 i = 1 n satisfying p l ( z i ) = y i , l for all l ∈ { 1 , 2 , … , r } and for all i ∈ I ⊂ { 1 , 2 , … , n } such that | I | = t with probability at least 1 − n − t | F | and with time complexity at most O ( r n 4 ) if t ⩾ max { k 1 , k 2 , … , k r , n + ∑ j = 1 r k j r + 1 } . Next, by using this algorithm, we present a probabilistic decoder for interleaved Reed–Solomon codes. It is observed that interleaved Reed–Solomon codes over F with rate R can be decoded up to burst error rate r r + 1 ( 1 − R ) probabilistically for an interleaving parameter r. Then, it is proved that q-folded Hermitian codes over F q 2 q with rate R can be decoded up to error rate q q + 1 ( 1 − R ) probabilistically.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simultaneous polynomial reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interleaved Reed–Solomon codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reed–Solomon codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Folded Hermitian codes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yayla, Oğuz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:520</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:6</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:111-123</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2013.10.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">520</subfield><subfield code="j">2014</subfield><subfield code="b">6</subfield><subfield code="c">0206</subfield><subfield code="h">111-123</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.400794 |