Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups
This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy gr...
Ausführliche Beschreibung
Autor*in: |
Ishii, Yutaka [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Umfang: |
63 |
---|
Übergeordnetes Werk: |
Enthalten in: Evidence of Titan’s climate history from evaporite distribution - MacKenzie, Shannon M. ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:255 ; year:2014 ; day:1 ; month:04 ; pages:242-304 ; extent:63 |
Links: |
---|
DOI / URN: |
10.1016/j.aim.2013.12.031 |
---|
Katalog-ID: |
ELV039506789 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039506789 | ||
003 | DE-627 | ||
005 | 20230624061957.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aim.2013.12.031 |2 doi | |
028 | 5 | 2 | |a GBVA2014019000015.pica |
035 | |a (DE-627)ELV039506789 | ||
035 | |a (ELSEVIER)S0001-8708(13)00480-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 520 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Ishii, Yutaka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
264 | 1 | |c 2014 | |
300 | |a 63 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. | ||
650 | 7 | |a secondary |2 Elsevier | |
650 | 7 | |a 37B10 |2 Elsevier | |
650 | 7 | |a 37F15 |2 Elsevier | |
650 | 7 | |a primary |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a MacKenzie, Shannon M. ELSEVIER |t Evidence of Titan’s climate history from evaporite distribution |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV012586625 |
773 | 1 | 8 | |g volume:255 |g year:2014 |g day:1 |g month:04 |g pages:242-304 |g extent:63 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2013.12.031 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_359 | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 255 |j 2014 |b 1 |c 0401 |h 242-304 |g 63 | ||
953 | |2 045F |a 510 |
author_variant |
y i yi |
---|---|
matchkey_str |
ishiiyutaka:2014----:yeblcoyoilifoopimociitrt |
hierarchy_sort_str |
2014 |
bklnumber |
44.94 |
publishDate |
2014 |
allfields |
10.1016/j.aim.2013.12.031 doi GBVA2014019000015.pica (DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Ishii, Yutaka verfasserin aut Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups 2014 63 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 https://doi.org/10.1016/j.aim.2013.12.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 255 2014 1 0401 242-304 63 045F 510 |
spelling |
10.1016/j.aim.2013.12.031 doi GBVA2014019000015.pica (DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Ishii, Yutaka verfasserin aut Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups 2014 63 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 https://doi.org/10.1016/j.aim.2013.12.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 255 2014 1 0401 242-304 63 045F 510 |
allfields_unstemmed |
10.1016/j.aim.2013.12.031 doi GBVA2014019000015.pica (DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Ishii, Yutaka verfasserin aut Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups 2014 63 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 https://doi.org/10.1016/j.aim.2013.12.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 255 2014 1 0401 242-304 63 045F 510 |
allfieldsGer |
10.1016/j.aim.2013.12.031 doi GBVA2014019000015.pica (DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Ishii, Yutaka verfasserin aut Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups 2014 63 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 https://doi.org/10.1016/j.aim.2013.12.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 255 2014 1 0401 242-304 63 045F 510 |
allfieldsSound |
10.1016/j.aim.2013.12.031 doi GBVA2014019000015.pica (DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Ishii, Yutaka verfasserin aut Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups 2014 63 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 https://doi.org/10.1016/j.aim.2013.12.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 255 2014 1 0401 242-304 63 045F 510 |
language |
English |
source |
Enthalten in Evidence of Titan’s climate history from evaporite distribution Amsterdam [u.a.] volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 |
sourceStr |
Enthalten in Evidence of Titan’s climate history from evaporite distribution Amsterdam [u.a.] volume:255 year:2014 day:1 month:04 pages:242-304 extent:63 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
secondary 37B10 37F15 primary |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Evidence of Titan’s climate history from evaporite distribution |
authorswithroles_txt_mv |
Ishii, Yutaka @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV012586625 |
dewey-sort |
3510 |
id |
ELV039506789 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039506789</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624061957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2013.12.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014019000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039506789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(13)00480-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">63</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">37B10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">37F15</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">MacKenzie, Shannon M. ELSEVIER</subfield><subfield code="t">Evidence of Titan’s climate history from evaporite distribution</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012586625</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:242-304</subfield><subfield code="g">extent:63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aim.2013.12.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_359</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">242-304</subfield><subfield code="g">63</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Ishii, Yutaka |
spellingShingle |
Ishii, Yutaka ddc 510 ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
authorStr |
Ishii, Yutaka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012586625 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 520 - Astronomy & allied sciences 530 - Physics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary Elsevier |
topic |
ddc 510 ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary |
topic_unstemmed |
ddc 510 ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary |
topic_browse |
ddc 510 ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier secondary Elsevier 37B10 Elsevier 37F15 Elsevier primary |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Evidence of Titan’s climate history from evaporite distribution |
hierarchy_parent_id |
ELV012586625 |
dewey-tens |
510 - Mathematics 520 - Astronomy 530 - Physics 570 - Life sciences; biology |
hierarchy_top_title |
Evidence of Titan’s climate history from evaporite distribution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012586625 |
title |
Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
ctrlnum |
(DE-627)ELV039506789 (ELSEVIER)S0001-8708(13)00480-5 |
title_full |
Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
author_sort |
Ishii, Yutaka |
journal |
Evidence of Titan’s climate history from evaporite distribution |
journalStr |
Evidence of Titan’s climate history from evaporite distribution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
242 |
author_browse |
Ishii, Yutaka |
container_volume |
255 |
physical |
63 |
class |
510 510 DE-600 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ishii, Yutaka |
doi_str_mv |
10.1016/j.aim.2013.12.031 |
dewey-full |
510 520 530 570 |
title_sort |
hyperbolic polynomial diffeomorphisms of c 2 . iii: iterated monodromy groups |
title_auth |
Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
abstract |
This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. |
abstractGer |
This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. |
abstract_unstemmed |
This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 |
title_short |
Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups |
url |
https://doi.org/10.1016/j.aim.2013.12.031 |
remote_bool |
true |
ppnlink |
ELV012586625 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aim.2013.12.031 |
up_date |
2024-07-06T20:46:58.181Z |
_version_ |
1803864053574008832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039506789</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624061957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2013.12.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014019000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039506789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(13)00480-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic polynomial diffeomorphisms of C 2 . III: Iterated monodromy groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">63</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper is a sequel to Part I [13] and Part II [14,15]. In the current article we relate several combinatorial descriptions of the Julia sets for hyperbolic polynomial diffeomorphisms of C 2 : quotients of solenoids [3], automata [22] and Hubbard trees [14,15]. The notion of iterated monodromy groups are defined for such diffeomorphisms and are used to construct automata from Hubbard trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">37B10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">37F15</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">MacKenzie, Shannon M. ELSEVIER</subfield><subfield code="t">Evidence of Titan’s climate history from evaporite distribution</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012586625</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:242-304</subfield><subfield code="g">extent:63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aim.2013.12.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_359</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">242-304</subfield><subfield code="g">63</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.4012203 |