Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations
Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by th...
Ausführliche Beschreibung
Autor*in: |
Ahsan, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
24 |
---|
Übergeordnetes Werk: |
Enthalten in: Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon - Kim, Jihyun R. ELSEVIER, 2015, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:257 ; year:2014 ; number:8 ; day:15 ; month:10 ; pages:2926-2949 ; extent:24 |
Links: |
---|
DOI / URN: |
10.1016/j.jde.2014.06.004 |
---|
Katalog-ID: |
ELV039547299 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039547299 | ||
003 | DE-627 | ||
005 | 20230625225234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jde.2014.06.004 |2 doi | |
028 | 5 | 2 | |a GBVA2014022000017.pica |
035 | |a (DE-627)ELV039547299 | ||
035 | |a (ELSEVIER)S0022-0396(14)00274-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Ahsan, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
264 | 1 | |c 2014transfer abstract | |
300 | |a 24 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . | ||
520 | |a Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . | ||
650 | 7 | |a 34G20 |2 Elsevier | |
650 | 7 | |a 34K26 |2 Elsevier | |
700 | 1 | |a Moroşanu, G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Kim, Jihyun R. ELSEVIER |t Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |d 2015 |g Orlando, Fla |w (DE-627)ELV012753777 |
773 | 1 | 8 | |g volume:257 |g year:2014 |g number:8 |g day:15 |g month:10 |g pages:2926-2949 |g extent:24 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jde.2014.06.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_105 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 257 |j 2014 |e 8 |b 15 |c 1015 |h 2926-2949 |g 24 | ||
953 | |2 045F |a 510 |
author_variant |
m a ma |
---|---|
matchkey_str |
ahsanmmoroanug:2014----:smttcxasosoelpilkrglrztosfeiie |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
51.00 |
publishDate |
2014 |
allfields |
10.1016/j.jde.2014.06.004 doi GBVA2014022000017.pica (DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Ahsan, M. verfasserin aut Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 2014transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . 34G20 Elsevier 34K26 Elsevier Moroşanu, G. oth Enthalten in Elsevier Kim, Jihyun R. ELSEVIER Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon 2015 Orlando, Fla (DE-627)ELV012753777 volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 https://doi.org/10.1016/j.jde.2014.06.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 51.00 Werkstoffkunde: Allgemeines VZ AR 257 2014 8 15 1015 2926-2949 24 045F 510 |
spelling |
10.1016/j.jde.2014.06.004 doi GBVA2014022000017.pica (DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Ahsan, M. verfasserin aut Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 2014transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . 34G20 Elsevier 34K26 Elsevier Moroşanu, G. oth Enthalten in Elsevier Kim, Jihyun R. ELSEVIER Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon 2015 Orlando, Fla (DE-627)ELV012753777 volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 https://doi.org/10.1016/j.jde.2014.06.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 51.00 Werkstoffkunde: Allgemeines VZ AR 257 2014 8 15 1015 2926-2949 24 045F 510 |
allfields_unstemmed |
10.1016/j.jde.2014.06.004 doi GBVA2014022000017.pica (DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Ahsan, M. verfasserin aut Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 2014transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . 34G20 Elsevier 34K26 Elsevier Moroşanu, G. oth Enthalten in Elsevier Kim, Jihyun R. ELSEVIER Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon 2015 Orlando, Fla (DE-627)ELV012753777 volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 https://doi.org/10.1016/j.jde.2014.06.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 51.00 Werkstoffkunde: Allgemeines VZ AR 257 2014 8 15 1015 2926-2949 24 045F 510 |
allfieldsGer |
10.1016/j.jde.2014.06.004 doi GBVA2014022000017.pica (DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Ahsan, M. verfasserin aut Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 2014transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . 34G20 Elsevier 34K26 Elsevier Moroşanu, G. oth Enthalten in Elsevier Kim, Jihyun R. ELSEVIER Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon 2015 Orlando, Fla (DE-627)ELV012753777 volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 https://doi.org/10.1016/j.jde.2014.06.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 51.00 Werkstoffkunde: Allgemeines VZ AR 257 2014 8 15 1015 2926-2949 24 045F 510 |
allfieldsSound |
10.1016/j.jde.2014.06.004 doi GBVA2014022000017.pica (DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Ahsan, M. verfasserin aut Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 2014transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . 34G20 Elsevier 34K26 Elsevier Moroşanu, G. oth Enthalten in Elsevier Kim, Jihyun R. ELSEVIER Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon 2015 Orlando, Fla (DE-627)ELV012753777 volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 https://doi.org/10.1016/j.jde.2014.06.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 51.00 Werkstoffkunde: Allgemeines VZ AR 257 2014 8 15 1015 2926-2949 24 045F 510 |
language |
English |
source |
Enthalten in Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon Orlando, Fla volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 |
sourceStr |
Enthalten in Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon Orlando, Fla volume:257 year:2014 number:8 day:15 month:10 pages:2926-2949 extent:24 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
34G20 34K26 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |
authorswithroles_txt_mv |
Ahsan, M. @@aut@@ Moroşanu, G. @@oth@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV012753777 |
dewey-sort |
3510 |
id |
ELV039547299 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039547299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jde.2014.06.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000017.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039547299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-0396(14)00274-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahsan, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) .</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">34G20</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">34K26</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moroşanu, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kim, Jihyun R. ELSEVIER</subfield><subfield code="t">Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon</subfield><subfield code="d">2015</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV012753777</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:257</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2926-2949</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jde.2014.06.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">257</subfield><subfield code="j">2014</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">2926-2949</subfield><subfield code="g">24</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Ahsan, M. |
spellingShingle |
Ahsan, M. ddc 510 ddc 660 ddc 530 bkl 51.00 Elsevier 34G20 Elsevier 34K26 Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
authorStr |
Ahsan, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012753777 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 660 VZ 530 600 670 VZ 51.00 bkl Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations 34G20 Elsevier 34K26 Elsevier |
topic |
ddc 510 ddc 660 ddc 530 bkl 51.00 Elsevier 34G20 Elsevier 34K26 |
topic_unstemmed |
ddc 510 ddc 660 ddc 530 bkl 51.00 Elsevier 34G20 Elsevier 34K26 |
topic_browse |
ddc 510 ddc 660 ddc 530 bkl 51.00 Elsevier 34G20 Elsevier 34K26 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g m gm |
hierarchy_parent_title |
Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |
hierarchy_parent_id |
ELV012753777 |
dewey-tens |
510 - Mathematics 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012753777 |
title |
Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
ctrlnum |
(DE-627)ELV039547299 (ELSEVIER)S0022-0396(14)00274-5 |
title_full |
Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
author_sort |
Ahsan, M. |
journal |
Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |
journalStr |
Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
2926 |
author_browse |
Ahsan, M. |
container_volume |
257 |
physical |
24 |
class |
510 510 DE-600 660 VZ 530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ahsan, M. |
doi_str_mv |
10.1016/j.jde.2014.06.004 |
dewey-full |
510 660 530 600 670 |
title_sort |
asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
title_auth |
Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
abstract |
Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . |
abstractGer |
Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . |
abstract_unstemmed |
Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) . |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_105 |
container_issue |
8 |
title_short |
Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations |
url |
https://doi.org/10.1016/j.jde.2014.06.004 |
remote_bool |
true |
author2 |
Moroşanu, G. |
author2Str |
Moroşanu, G. |
ppnlink |
ELV012753777 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jde.2014.06.004 |
up_date |
2024-07-06T20:53:36.770Z |
_version_ |
1803864471524868096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039547299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jde.2014.06.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000017.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039547299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-0396(14)00274-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahsan, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) .</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider in a real Hilbert space H the Cauchy problem ( P 0 ): u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , where −A is the infinitesimal generator of a C 0 -semigroup of contractions, B is a nonlinear monotone operator, and f is a given H-valued function. Inspired by the excellent book on singular perturbations by J.L. Lions, we associate with problem ( P 0 ) the following regularization ( P ε ): − ε u ″ ( t ) + u ′ ( t ) + A u ( t ) + B u ( t ) = f ( t ) , 0 ≤ t ≤ T ; u ( 0 ) = u 0 , u ′ ( T ) = u T , where ε > 0 is a small parameter. We investigate existence, uniqueness and higher regularity for problem ( P ε ). Then we establish asymptotic expansions of order zero, and of order one, for the solution of ( P ε ). Problem ( P ε ) turns out to be regularly perturbed of order zero, and singularly perturbed of order one, with respect to the norm of C ( [ 0 , T ] ; H ) . However, the boundary layer of order one is not visible through the norm of L 2 ( 0 , T ; H ) .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">34G20</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">34K26</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moroşanu, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kim, Jihyun R. ELSEVIER</subfield><subfield code="t">Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon</subfield><subfield code="d">2015</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV012753777</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:257</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2926-2949</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jde.2014.06.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">257</subfield><subfield code="j">2014</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">2926-2949</subfield><subfield code="g">24</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.3989754 |