Metabolic reprogramming of the heart through stearoyl-CoA desaturase
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In...
Ausführliche Beschreibung
Autor*in: |
Dobrzyn, Pawel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze - Du, Hailong ELSEVIER, 2022, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2015 ; pages:1-12 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.plipres.2014.11.003 |
---|
Katalog-ID: |
ELV039612716 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039612716 | ||
003 | DE-627 | ||
005 | 20230625225425.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.plipres.2014.11.003 |2 doi | |
028 | 5 | 2 | |a GBVA2015004000008.pica |
035 | |a (DE-627)ELV039612716 | ||
035 | |a (ELSEVIER)S0163-7827(14)00062-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.90 |2 bkl | ||
100 | 1 | |a Dobrzyn, Pawel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
264 | 1 | |c 2015transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. | ||
520 | |a Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. | ||
650 | 7 | |a NO |2 Elsevier | |
650 | 7 | |a MUFA |2 Elsevier | |
650 | 7 | |a LV |2 Elsevier | |
650 | 7 | |a IRS |2 Elsevier | |
650 | 7 | |a SFA |2 Elsevier | |
650 | 7 | |a PI3K |2 Elsevier | |
650 | 7 | |a PPAR |2 Elsevier | |
650 | 7 | |a CPT1 |2 Elsevier | |
650 | 7 | |a FATP |2 Elsevier | |
650 | 7 | |a iNOS |2 Elsevier | |
650 | 7 | |a CD36 |2 Elsevier | |
650 | 7 | |a IL |2 Elsevier | |
650 | 7 | |a SREBP |2 Elsevier | |
650 | 7 | |a PUFA |2 Elsevier | |
650 | 7 | |a IR |2 Elsevier | |
650 | 7 | |a DAG |2 Elsevier | |
650 | 7 | |a CVD |2 Elsevier | |
650 | 7 | |a TG |2 Elsevier | |
650 | 7 | |a SCD |2 Elsevier | |
650 | 7 | |a PLs |2 Elsevier | |
650 | 7 | |a AMPK |2 Elsevier | |
650 | 7 | |a FAS |2 Elsevier | |
650 | 7 | |a FA |2 Elsevier | |
650 | 7 | |a TO |2 Elsevier | |
650 | 7 | |a GLUT4 |2 Elsevier | |
650 | 7 | |a DAGL |2 Elsevier | |
650 | 7 | |a GPAT |2 Elsevier | |
650 | 7 | |a TS |2 Elsevier | |
700 | 1 | |a Bednarski, Tomasz |4 oth | |
700 | 1 | |a Dobrzyn, Agnieszka |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Du, Hailong ELSEVIER |t Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |d 2022 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV007758952 |
773 | 1 | 8 | |g volume:57 |g year:2015 |g pages:1-12 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.plipres.2014.11.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.90 |j Ökologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 57 |j 2015 |h 1-12 |g 12 | ||
953 | |2 045F |a 540 |
author_variant |
p d pd |
---|---|
matchkey_str |
dobrzynpawelbednarskitomaszdobrzynagnies:2015----:eaoirpormigfhhathogser |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
42.90 |
publishDate |
2015 |
allfields |
10.1016/j.plipres.2014.11.003 doi GBVA2015004000008.pica (DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Dobrzyn, Pawel verfasserin aut Metabolic reprogramming of the heart through stearoyl-CoA desaturase 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier Bednarski, Tomasz oth Dobrzyn, Agnieszka oth Enthalten in Elsevier Science Du, Hailong ELSEVIER Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze 2022 an international journal Amsterdam [u.a.] (DE-627)ELV007758952 volume:57 year:2015 pages:1-12 extent:12 https://doi.org/10.1016/j.plipres.2014.11.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.90 Ökologie: Allgemeines VZ AR 57 2015 1-12 12 045F 540 |
spelling |
10.1016/j.plipres.2014.11.003 doi GBVA2015004000008.pica (DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Dobrzyn, Pawel verfasserin aut Metabolic reprogramming of the heart through stearoyl-CoA desaturase 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier Bednarski, Tomasz oth Dobrzyn, Agnieszka oth Enthalten in Elsevier Science Du, Hailong ELSEVIER Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze 2022 an international journal Amsterdam [u.a.] (DE-627)ELV007758952 volume:57 year:2015 pages:1-12 extent:12 https://doi.org/10.1016/j.plipres.2014.11.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.90 Ökologie: Allgemeines VZ AR 57 2015 1-12 12 045F 540 |
allfields_unstemmed |
10.1016/j.plipres.2014.11.003 doi GBVA2015004000008.pica (DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Dobrzyn, Pawel verfasserin aut Metabolic reprogramming of the heart through stearoyl-CoA desaturase 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier Bednarski, Tomasz oth Dobrzyn, Agnieszka oth Enthalten in Elsevier Science Du, Hailong ELSEVIER Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze 2022 an international journal Amsterdam [u.a.] (DE-627)ELV007758952 volume:57 year:2015 pages:1-12 extent:12 https://doi.org/10.1016/j.plipres.2014.11.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.90 Ökologie: Allgemeines VZ AR 57 2015 1-12 12 045F 540 |
allfieldsGer |
10.1016/j.plipres.2014.11.003 doi GBVA2015004000008.pica (DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Dobrzyn, Pawel verfasserin aut Metabolic reprogramming of the heart through stearoyl-CoA desaturase 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier Bednarski, Tomasz oth Dobrzyn, Agnieszka oth Enthalten in Elsevier Science Du, Hailong ELSEVIER Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze 2022 an international journal Amsterdam [u.a.] (DE-627)ELV007758952 volume:57 year:2015 pages:1-12 extent:12 https://doi.org/10.1016/j.plipres.2014.11.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.90 Ökologie: Allgemeines VZ AR 57 2015 1-12 12 045F 540 |
allfieldsSound |
10.1016/j.plipres.2014.11.003 doi GBVA2015004000008.pica (DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Dobrzyn, Pawel verfasserin aut Metabolic reprogramming of the heart through stearoyl-CoA desaturase 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier Bednarski, Tomasz oth Dobrzyn, Agnieszka oth Enthalten in Elsevier Science Du, Hailong ELSEVIER Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze 2022 an international journal Amsterdam [u.a.] (DE-627)ELV007758952 volume:57 year:2015 pages:1-12 extent:12 https://doi.org/10.1016/j.plipres.2014.11.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.90 Ökologie: Allgemeines VZ AR 57 2015 1-12 12 045F 540 |
language |
English |
source |
Enthalten in Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze Amsterdam [u.a.] volume:57 year:2015 pages:1-12 extent:12 |
sourceStr |
Enthalten in Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze Amsterdam [u.a.] volume:57 year:2015 pages:1-12 extent:12 |
format_phy_str_mv |
Article |
bklname |
Ökologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
NO MUFA LV IRS SFA PI3K PPAR CPT1 FATP iNOS CD36 IL SREBP PUFA IR DAG CVD TG SCD PLs AMPK FAS FA TO GLUT4 DAGL GPAT TS |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |
authorswithroles_txt_mv |
Dobrzyn, Pawel @@aut@@ Bednarski, Tomasz @@oth@@ Dobrzyn, Agnieszka @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV007758952 |
dewey-sort |
3540 |
id |
ELV039612716 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039612716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225425.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plipres.2014.11.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015004000008.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039612716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0163-7827(14)00062-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dobrzyn, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolic reprogramming of the heart through stearoyl-CoA desaturase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MUFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IRS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PI3K</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PPAR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CPT1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FATP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">iNOS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CD36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SREBP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PUFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DAG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PLs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMPK</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GLUT4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DAGL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GPAT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bednarski, Tomasz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dobrzyn, Agnieszka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Du, Hailong ELSEVIER</subfield><subfield code="t">Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007758952</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1-12</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plipres.2014.11.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.90</subfield><subfield code="j">Ökologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2015</subfield><subfield code="h">1-12</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Dobrzyn, Pawel |
spellingShingle |
Dobrzyn, Pawel ddc 540 ddc 570 fid BIODIV bkl 42.90 Elsevier NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
authorStr |
Dobrzyn, Pawel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007758952 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl Metabolic reprogramming of the heart through stearoyl-CoA desaturase NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS Elsevier |
topic |
ddc 540 ddc 570 fid BIODIV bkl 42.90 Elsevier NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS |
topic_unstemmed |
ddc 540 ddc 570 fid BIODIV bkl 42.90 Elsevier NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS |
topic_browse |
ddc 540 ddc 570 fid BIODIV bkl 42.90 Elsevier NO Elsevier MUFA Elsevier LV Elsevier IRS Elsevier SFA Elsevier PI3K Elsevier PPAR Elsevier CPT1 Elsevier FATP Elsevier iNOS Elsevier CD36 Elsevier IL Elsevier SREBP Elsevier PUFA Elsevier IR Elsevier DAG Elsevier CVD Elsevier TG Elsevier SCD Elsevier PLs Elsevier AMPK Elsevier FAS Elsevier FA Elsevier TO Elsevier GLUT4 Elsevier DAGL Elsevier GPAT Elsevier TS |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t b tb a d ad |
hierarchy_parent_title |
Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |
hierarchy_parent_id |
ELV007758952 |
dewey-tens |
540 - Chemistry 570 - Life sciences; biology |
hierarchy_top_title |
Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007758952 |
title |
Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
ctrlnum |
(DE-627)ELV039612716 (ELSEVIER)S0163-7827(14)00062-9 |
title_full |
Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
author_sort |
Dobrzyn, Pawel |
journal |
Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |
journalStr |
Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Dobrzyn, Pawel |
container_volume |
57 |
physical |
12 |
class |
540 540 DE-600 570 VZ BIODIV DE-30 fid 42.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dobrzyn, Pawel |
doi_str_mv |
10.1016/j.plipres.2014.11.003 |
dewey-full |
540 570 |
title_sort |
metabolic reprogramming of the heart through stearoyl-coa desaturase |
title_auth |
Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
abstract |
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. |
abstractGer |
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. |
abstract_unstemmed |
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Metabolic reprogramming of the heart through stearoyl-CoA desaturase |
url |
https://doi.org/10.1016/j.plipres.2014.11.003 |
remote_bool |
true |
author2 |
Bednarski, Tomasz Dobrzyn, Agnieszka |
author2Str |
Bednarski, Tomasz Dobrzyn, Agnieszka |
ppnlink |
ELV007758952 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.plipres.2014.11.003 |
up_date |
2024-07-06T21:03:26.546Z |
_version_ |
1803865089950875648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039612716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225425.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plipres.2014.11.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015004000008.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039612716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0163-7827(14)00062-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dobrzyn, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolic reprogramming of the heart through stearoyl-CoA desaturase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MUFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IRS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PI3K</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PPAR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CPT1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FATP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">iNOS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CD36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SREBP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PUFA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DAG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PLs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMPK</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GLUT4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DAGL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GPAT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bednarski, Tomasz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dobrzyn, Agnieszka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Du, Hailong ELSEVIER</subfield><subfield code="t">Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007758952</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1-12</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plipres.2014.11.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.90</subfield><subfield code="j">Ökologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2015</subfield><subfield code="h">1-12</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.402769 |