Advanced low-beta cavity development for proton and ion accelerators
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate acceleratin...
Ausführliche Beschreibung
Autor*in: |
Conway, Z.A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Editorial Comment - Unwala, Darius J. ELSEVIER, 2013, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:350 ; year:2015 ; day:1 ; month:05 ; pages:94-98 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.nimb.2015.01.012 |
---|
Katalog-ID: |
ELV039649652 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039649652 | ||
003 | DE-627 | ||
005 | 20230625225530.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nimb.2015.01.012 |2 doi | |
028 | 5 | 2 | |a GBV00000000000190A.pica |
035 | |a (DE-627)ELV039649652 | ||
035 | |a (ELSEVIER)S0168-583X(15)00025-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Conway, Z.A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advanced low-beta cavity development for proton and ion accelerators |
264 | 1 | |c 2015transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. | ||
520 | |a Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. | ||
650 | 7 | |a Proton accelerators |2 Elsevier | |
650 | 7 | |a Superconducting radio frequency cavities |2 Elsevier | |
650 | 7 | |a Low-beta cavities |2 Elsevier | |
650 | 7 | |a Heavy ion accelerators |2 Elsevier | |
700 | 1 | |a Kelly, M.P. |4 oth | |
700 | 1 | |a Ostroumov, P.N. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Unwala, Darius J. ELSEVIER |t Editorial Comment |d 2013 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam [u.a.] |w (DE-627)ELV011304669 |
773 | 1 | 8 | |g volume:350 |g year:2015 |g day:1 |g month:05 |g pages:94-98 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nimb.2015.01.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 350 |j 2015 |b 1 |c 0501 |h 94-98 |g 5 | ||
953 | |2 045F |a 530 |
author_variant |
z c zc |
---|---|
matchkey_str |
conwayzakellympostroumovpn:2015----:dacdobtcvtdvlpetopooa |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.85 |
publishDate |
2015 |
allfields |
10.1016/j.nimb.2015.01.012 doi GBV00000000000190A.pica (DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Conway, Z.A. verfasserin aut Advanced low-beta cavity development for proton and ion accelerators 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier Kelly, M.P. oth Ostroumov, P.N. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 https://doi.org/10.1016/j.nimb.2015.01.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 350 2015 1 0501 94-98 5 045F 530 |
spelling |
10.1016/j.nimb.2015.01.012 doi GBV00000000000190A.pica (DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Conway, Z.A. verfasserin aut Advanced low-beta cavity development for proton and ion accelerators 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier Kelly, M.P. oth Ostroumov, P.N. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 https://doi.org/10.1016/j.nimb.2015.01.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 350 2015 1 0501 94-98 5 045F 530 |
allfields_unstemmed |
10.1016/j.nimb.2015.01.012 doi GBV00000000000190A.pica (DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Conway, Z.A. verfasserin aut Advanced low-beta cavity development for proton and ion accelerators 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier Kelly, M.P. oth Ostroumov, P.N. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 https://doi.org/10.1016/j.nimb.2015.01.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 350 2015 1 0501 94-98 5 045F 530 |
allfieldsGer |
10.1016/j.nimb.2015.01.012 doi GBV00000000000190A.pica (DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Conway, Z.A. verfasserin aut Advanced low-beta cavity development for proton and ion accelerators 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier Kelly, M.P. oth Ostroumov, P.N. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 https://doi.org/10.1016/j.nimb.2015.01.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 350 2015 1 0501 94-98 5 045F 530 |
allfieldsSound |
10.1016/j.nimb.2015.01.012 doi GBV00000000000190A.pica (DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Conway, Z.A. verfasserin aut Advanced low-beta cavity development for proton and ion accelerators 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier Kelly, M.P. oth Ostroumov, P.N. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 https://doi.org/10.1016/j.nimb.2015.01.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 350 2015 1 0501 94-98 5 045F 530 |
language |
English |
source |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 |
sourceStr |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:350 year:2015 day:1 month:05 pages:94-98 extent:5 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Proton accelerators Superconducting radio frequency cavities Low-beta cavities Heavy ion accelerators |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Editorial Comment |
authorswithroles_txt_mv |
Conway, Z.A. @@aut@@ Kelly, M.P. @@oth@@ Ostroumov, P.N. @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV011304669 |
dewey-sort |
3530 |
id |
ELV039649652 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039649652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2015.01.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000190A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039649652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(15)00025-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conway, Z.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced low-beta cavity development for proton and ion accelerators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proton accelerators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superconducting radio frequency cavities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low-beta cavities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heavy ion accelerators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelly, M.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostroumov, P.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:350</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:94-98</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2015.01.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">350</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">94-98</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Conway, Z.A. |
spellingShingle |
Conway, Z.A. ddc 530 ddc 610 bkl 44.85 Elsevier Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Advanced low-beta cavity development for proton and ion accelerators |
authorStr |
Conway, Z.A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011304669 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 610 VZ 44.85 bkl Advanced low-beta cavity development for proton and ion accelerators Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators Elsevier |
topic |
ddc 530 ddc 610 bkl 44.85 Elsevier Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators |
topic_unstemmed |
ddc 530 ddc 610 bkl 44.85 Elsevier Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators |
topic_browse |
ddc 530 ddc 610 bkl 44.85 Elsevier Proton accelerators Elsevier Superconducting radio frequency cavities Elsevier Low-beta cavities Elsevier Heavy ion accelerators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m k mk p o po |
hierarchy_parent_title |
Editorial Comment |
hierarchy_parent_id |
ELV011304669 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
Editorial Comment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011304669 |
title |
Advanced low-beta cavity development for proton and ion accelerators |
ctrlnum |
(DE-627)ELV039649652 (ELSEVIER)S0168-583X(15)00025-7 |
title_full |
Advanced low-beta cavity development for proton and ion accelerators |
author_sort |
Conway, Z.A. |
journal |
Editorial Comment |
journalStr |
Editorial Comment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
94 |
author_browse |
Conway, Z.A. |
container_volume |
350 |
physical |
5 |
class |
530 530 DE-600 610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Conway, Z.A. |
doi_str_mv |
10.1016/j.nimb.2015.01.012 |
dewey-full |
530 610 |
title_sort |
advanced low-beta cavity development for proton and ion accelerators |
title_auth |
Advanced low-beta cavity development for proton and ion accelerators |
abstract |
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. |
abstractGer |
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. |
abstract_unstemmed |
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 |
title_short |
Advanced low-beta cavity development for proton and ion accelerators |
url |
https://doi.org/10.1016/j.nimb.2015.01.012 |
remote_bool |
true |
author2 |
Kelly, M.P. Ostroumov, P.N. |
author2Str |
Kelly, M.P. Ostroumov, P.N. |
ppnlink |
ELV011304669 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.nimb.2015.01.012 |
up_date |
2024-07-06T21:08:57.465Z |
_version_ |
1803865436944596992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039649652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2015.01.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000190A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039649652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(15)00025-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conway, Z.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced low-beta cavity development for proton and ion accelerators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166mT magnetic and 117MV/m electric in a 72MHz quarter-wave resonator optimized for β =0.077 ions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proton accelerators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superconducting radio frequency cavities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low-beta cavities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heavy ion accelerators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelly, M.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostroumov, P.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:350</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:94-98</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2015.01.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">350</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">94-98</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402525 |