Decay heat calculations for a 500kW W–Ta spallation target
The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings c...
Ausführliche Beschreibung
Autor*in: |
Yu, Quanzhi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Editorial Comment - Unwala, Darius J. ELSEVIER, 2013, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:351 ; year:2015 ; day:15 ; month:05 ; pages:41-45 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.nimb.2015.03.087 |
---|
Katalog-ID: |
ELV03964992X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV03964992X | ||
003 | DE-627 | ||
005 | 20230625225531.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nimb.2015.03.087 |2 doi | |
028 | 5 | 2 | |a GBVA2015005000021.pica |
035 | |a (DE-627)ELV03964992X | ||
035 | |a (ELSEVIER)S0168-583X(15)00334-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Yu, Quanzhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Decay heat calculations for a 500kW W–Ta spallation target |
264 | 1 | |c 2015transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. | ||
520 | |a The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. | ||
650 | 7 | |a Decay heat |2 Elsevier | |
650 | 7 | |a W–Ta spallation target |2 Elsevier | |
650 | 7 | |a CSNS |2 Elsevier | |
700 | 1 | |a Lu, Youlian |4 oth | |
700 | 1 | |a Hu, Zhiliang |4 oth | |
700 | 1 | |a Zhou, Bin |4 oth | |
700 | 1 | |a Yin, Wen |4 oth | |
700 | 1 | |a Liang, Tianjiao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Unwala, Darius J. ELSEVIER |t Editorial Comment |d 2013 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam [u.a.] |w (DE-627)ELV011304669 |
773 | 1 | 8 | |g volume:351 |g year:2015 |g day:15 |g month:05 |g pages:41-45 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nimb.2015.03.087 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 351 |j 2015 |b 15 |c 0515 |h 41-45 |g 5 | ||
953 | |2 045F |a 530 |
author_variant |
q y qy |
---|---|
matchkey_str |
yuquanzhiluyoulianhuzhiliangzhoubinyinwe:2015----:eahacluainfr50wtsa |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.85 |
publishDate |
2015 |
allfields |
10.1016/j.nimb.2015.03.087 doi GBVA2015005000021.pica (DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Yu, Quanzhi verfasserin aut Decay heat calculations for a 500kW W–Ta spallation target 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier Lu, Youlian oth Hu, Zhiliang oth Zhou, Bin oth Yin, Wen oth Liang, Tianjiao oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 https://doi.org/10.1016/j.nimb.2015.03.087 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 351 2015 15 0515 41-45 5 045F 530 |
spelling |
10.1016/j.nimb.2015.03.087 doi GBVA2015005000021.pica (DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Yu, Quanzhi verfasserin aut Decay heat calculations for a 500kW W–Ta spallation target 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier Lu, Youlian oth Hu, Zhiliang oth Zhou, Bin oth Yin, Wen oth Liang, Tianjiao oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 https://doi.org/10.1016/j.nimb.2015.03.087 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 351 2015 15 0515 41-45 5 045F 530 |
allfields_unstemmed |
10.1016/j.nimb.2015.03.087 doi GBVA2015005000021.pica (DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Yu, Quanzhi verfasserin aut Decay heat calculations for a 500kW W–Ta spallation target 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier Lu, Youlian oth Hu, Zhiliang oth Zhou, Bin oth Yin, Wen oth Liang, Tianjiao oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 https://doi.org/10.1016/j.nimb.2015.03.087 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 351 2015 15 0515 41-45 5 045F 530 |
allfieldsGer |
10.1016/j.nimb.2015.03.087 doi GBVA2015005000021.pica (DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Yu, Quanzhi verfasserin aut Decay heat calculations for a 500kW W–Ta spallation target 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier Lu, Youlian oth Hu, Zhiliang oth Zhou, Bin oth Yin, Wen oth Liang, Tianjiao oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 https://doi.org/10.1016/j.nimb.2015.03.087 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 351 2015 15 0515 41-45 5 045F 530 |
allfieldsSound |
10.1016/j.nimb.2015.03.087 doi GBVA2015005000021.pica (DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 610 VZ 44.85 bkl Yu, Quanzhi verfasserin aut Decay heat calculations for a 500kW W–Ta spallation target 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier Lu, Youlian oth Hu, Zhiliang oth Zhou, Bin oth Yin, Wen oth Liang, Tianjiao oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 https://doi.org/10.1016/j.nimb.2015.03.087 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 351 2015 15 0515 41-45 5 045F 530 |
language |
English |
source |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 |
sourceStr |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:351 year:2015 day:15 month:05 pages:41-45 extent:5 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Decay heat W–Ta spallation target CSNS |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Editorial Comment |
authorswithroles_txt_mv |
Yu, Quanzhi @@aut@@ Lu, Youlian @@oth@@ Hu, Zhiliang @@oth@@ Zhou, Bin @@oth@@ Yin, Wen @@oth@@ Liang, Tianjiao @@oth@@ |
publishDateDaySort_date |
2015-01-15T00:00:00Z |
hierarchy_top_id |
ELV011304669 |
dewey-sort |
3530 |
id |
ELV03964992X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV03964992X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2015.03.087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015005000021.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV03964992X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(15)00334-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Quanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decay heat calculations for a 500kW W–Ta spallation target</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decay heat</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">W–Ta spallation target</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CSNS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Youlian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhiliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Bin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Tianjiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:351</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:41-45</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2015.03.087</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">351</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">41-45</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Yu, Quanzhi |
spellingShingle |
Yu, Quanzhi ddc 530 ddc 610 bkl 44.85 Elsevier Decay heat Elsevier W–Ta spallation target Elsevier CSNS Decay heat calculations for a 500kW W–Ta spallation target |
authorStr |
Yu, Quanzhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011304669 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 610 VZ 44.85 bkl Decay heat calculations for a 500kW W–Ta spallation target Decay heat Elsevier W–Ta spallation target Elsevier CSNS Elsevier |
topic |
ddc 530 ddc 610 bkl 44.85 Elsevier Decay heat Elsevier W–Ta spallation target Elsevier CSNS |
topic_unstemmed |
ddc 530 ddc 610 bkl 44.85 Elsevier Decay heat Elsevier W–Ta spallation target Elsevier CSNS |
topic_browse |
ddc 530 ddc 610 bkl 44.85 Elsevier Decay heat Elsevier W–Ta spallation target Elsevier CSNS |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y l yl z h zh b z bz w y wy t l tl |
hierarchy_parent_title |
Editorial Comment |
hierarchy_parent_id |
ELV011304669 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
Editorial Comment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011304669 |
title |
Decay heat calculations for a 500kW W–Ta spallation target |
ctrlnum |
(DE-627)ELV03964992X (ELSEVIER)S0168-583X(15)00334-1 |
title_full |
Decay heat calculations for a 500kW W–Ta spallation target |
author_sort |
Yu, Quanzhi |
journal |
Editorial Comment |
journalStr |
Editorial Comment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
41 |
author_browse |
Yu, Quanzhi |
container_volume |
351 |
physical |
5 |
class |
530 530 DE-600 610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Quanzhi |
doi_str_mv |
10.1016/j.nimb.2015.03.087 |
dewey-full |
530 610 |
title_sort |
decay heat calculations for a 500kw w–ta spallation target |
title_auth |
Decay heat calculations for a 500kW W–Ta spallation target |
abstract |
The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. |
abstractGer |
The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. |
abstract_unstemmed |
The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 |
title_short |
Decay heat calculations for a 500kW W–Ta spallation target |
url |
https://doi.org/10.1016/j.nimb.2015.03.087 |
remote_bool |
true |
author2 |
Lu, Youlian Hu, Zhiliang Zhou, Bin Yin, Wen Liang, Tianjiao |
author2Str |
Lu, Youlian Hu, Zhiliang Zhou, Bin Yin, Wen Liang, Tianjiao |
ppnlink |
ELV011304669 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.nimb.2015.03.087 |
up_date |
2024-07-06T21:09:00.299Z |
_version_ |
1803865439915212800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV03964992X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2015.03.087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015005000021.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV03964992X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(15)00334-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Quanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decay heat calculations for a 500kW W–Ta spallation target</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The China Spallation Neutron Source (CSNS) is a short-pulsed neutron scattering facility. The beam power is designed to be 100kW in Phase I, with the capability of upgrading to 500kW. Tantalum (Ta)-cladded tungsten (W) was chosen as the spallation target due to its high neutron yield. Ta claddings can solve the problem of the corrosiveness of W plates, although they produce high decay heat after intense irradiation. This paper presents the decay heat distributions and evolutions for the future upgraded 500kW W–Ta spallation target. The calculations are performed using the MCNPX2.5 Monte Carlo code and the CINDER’90 activation code. The decay heat distributions show that for the W plates, decay heat is mainly produced via the spallation reaction process, whereas for the Ta claddings, it is mainly produced via the neutron capture process. An effective method of reducing the decay heat in the W–Ta target is also presented and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decay heat</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">W–Ta spallation target</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CSNS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Youlian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhiliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Bin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Tianjiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:351</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:41-45</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2015.03.087</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">351</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">41-45</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.399585 |