Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet
A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is for...
Ausführliche Beschreibung
Autor*in: |
Espinosa, G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Real-time 3D face tracking based on active appearance model constrained by depth data - Smolyanskiy, Nikolai ELSEVIER, 2014transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2015 ; pages:74-84 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.hedp.2014.10.008 |
---|
Katalog-ID: |
ELV039684407 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039684407 | ||
003 | DE-627 | ||
005 | 20230625225630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.hedp.2014.10.008 |2 doi | |
028 | 5 | 2 | |a GBVA2015007000013.pica |
035 | |a (DE-627)ELV039684407 | ||
035 | |a (ELSEVIER)S1574-1818(14)00068-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Espinosa, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
264 | 1 | |c 2015transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. | ||
520 | |a A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. | ||
650 | 7 | |a Radiatively cooled plasma jet |2 Elsevier | |
650 | 7 | |a Kinetic population simulation |2 Elsevier | |
650 | 7 | |a Supersonic jet |2 Elsevier | |
650 | 7 | |a Aluminum plasmas |2 Elsevier | |
700 | 1 | |a Gil, J.M. |4 oth | |
700 | 1 | |a Rodriguez, R. |4 oth | |
700 | 1 | |a Rubiano, J.G. |4 oth | |
700 | 1 | |a Mendoza, M.A. |4 oth | |
700 | 1 | |a Martel, P. |4 oth | |
700 | 1 | |a Minguez, E. |4 oth | |
700 | 1 | |a Suzuki-Vidal, F. |4 oth | |
700 | 1 | |a Lebedev, S.V. |4 oth | |
700 | 1 | |a Swadling, G.F. |4 oth | |
700 | 1 | |a Burdiak, G. |4 oth | |
700 | 1 | |a Pickworth, L.A. |4 oth | |
700 | 1 | |a Skidmore, J. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Smolyanskiy, Nikolai ELSEVIER |t Real-time 3D face tracking based on active appearance model constrained by depth data |d 2014transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV022623884 |
773 | 1 | 8 | |g volume:17 |g year:2015 |g pages:74-84 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.hedp.2014.10.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
951 | |a AR | ||
952 | |d 17 |j 2015 |h 74-84 |g 11 | ||
953 | |2 045F |a 530 |
author_variant |
g e ge |
---|---|
matchkey_str |
espinosaggiljmrodriguezrrubianojgmendoza:2015----:olsoardaieiuainoauesncnrdaieyo |
hierarchy_sort_str |
2015transfer abstract |
publishDate |
2015 |
allfields |
10.1016/j.hedp.2014.10.008 doi GBVA2015007000013.pica (DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ Espinosa, G. verfasserin aut Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier Gil, J.M. oth Rodriguez, R. oth Rubiano, J.G. oth Mendoza, M.A. oth Martel, P. oth Minguez, E. oth Suzuki-Vidal, F. oth Lebedev, S.V. oth Swadling, G.F. oth Burdiak, G. oth Pickworth, L.A. oth Skidmore, J. oth Enthalten in Elsevier Smolyanskiy, Nikolai ELSEVIER Real-time 3D face tracking based on active appearance model constrained by depth data 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV022623884 volume:17 year:2015 pages:74-84 extent:11 https://doi.org/10.1016/j.hedp.2014.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 AR 17 2015 74-84 11 045F 530 |
spelling |
10.1016/j.hedp.2014.10.008 doi GBVA2015007000013.pica (DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ Espinosa, G. verfasserin aut Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier Gil, J.M. oth Rodriguez, R. oth Rubiano, J.G. oth Mendoza, M.A. oth Martel, P. oth Minguez, E. oth Suzuki-Vidal, F. oth Lebedev, S.V. oth Swadling, G.F. oth Burdiak, G. oth Pickworth, L.A. oth Skidmore, J. oth Enthalten in Elsevier Smolyanskiy, Nikolai ELSEVIER Real-time 3D face tracking based on active appearance model constrained by depth data 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV022623884 volume:17 year:2015 pages:74-84 extent:11 https://doi.org/10.1016/j.hedp.2014.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 AR 17 2015 74-84 11 045F 530 |
allfields_unstemmed |
10.1016/j.hedp.2014.10.008 doi GBVA2015007000013.pica (DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ Espinosa, G. verfasserin aut Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier Gil, J.M. oth Rodriguez, R. oth Rubiano, J.G. oth Mendoza, M.A. oth Martel, P. oth Minguez, E. oth Suzuki-Vidal, F. oth Lebedev, S.V. oth Swadling, G.F. oth Burdiak, G. oth Pickworth, L.A. oth Skidmore, J. oth Enthalten in Elsevier Smolyanskiy, Nikolai ELSEVIER Real-time 3D face tracking based on active appearance model constrained by depth data 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV022623884 volume:17 year:2015 pages:74-84 extent:11 https://doi.org/10.1016/j.hedp.2014.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 AR 17 2015 74-84 11 045F 530 |
allfieldsGer |
10.1016/j.hedp.2014.10.008 doi GBVA2015007000013.pica (DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ Espinosa, G. verfasserin aut Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier Gil, J.M. oth Rodriguez, R. oth Rubiano, J.G. oth Mendoza, M.A. oth Martel, P. oth Minguez, E. oth Suzuki-Vidal, F. oth Lebedev, S.V. oth Swadling, G.F. oth Burdiak, G. oth Pickworth, L.A. oth Skidmore, J. oth Enthalten in Elsevier Smolyanskiy, Nikolai ELSEVIER Real-time 3D face tracking based on active appearance model constrained by depth data 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV022623884 volume:17 year:2015 pages:74-84 extent:11 https://doi.org/10.1016/j.hedp.2014.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 AR 17 2015 74-84 11 045F 530 |
allfieldsSound |
10.1016/j.hedp.2014.10.008 doi GBVA2015007000013.pica (DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ Espinosa, G. verfasserin aut Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier Gil, J.M. oth Rodriguez, R. oth Rubiano, J.G. oth Mendoza, M.A. oth Martel, P. oth Minguez, E. oth Suzuki-Vidal, F. oth Lebedev, S.V. oth Swadling, G.F. oth Burdiak, G. oth Pickworth, L.A. oth Skidmore, J. oth Enthalten in Elsevier Smolyanskiy, Nikolai ELSEVIER Real-time 3D face tracking based on active appearance model constrained by depth data 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV022623884 volume:17 year:2015 pages:74-84 extent:11 https://doi.org/10.1016/j.hedp.2014.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 AR 17 2015 74-84 11 045F 530 |
language |
English |
source |
Enthalten in Real-time 3D face tracking based on active appearance model constrained by depth data Amsterdam [u.a.] volume:17 year:2015 pages:74-84 extent:11 |
sourceStr |
Enthalten in Real-time 3D face tracking based on active appearance model constrained by depth data Amsterdam [u.a.] volume:17 year:2015 pages:74-84 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiatively cooled plasma jet Kinetic population simulation Supersonic jet Aluminum plasmas |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Real-time 3D face tracking based on active appearance model constrained by depth data |
authorswithroles_txt_mv |
Espinosa, G. @@aut@@ Gil, J.M. @@oth@@ Rodriguez, R. @@oth@@ Rubiano, J.G. @@oth@@ Mendoza, M.A. @@oth@@ Martel, P. @@oth@@ Minguez, E. @@oth@@ Suzuki-Vidal, F. @@oth@@ Lebedev, S.V. @@oth@@ Swadling, G.F. @@oth@@ Burdiak, G. @@oth@@ Pickworth, L.A. @@oth@@ Skidmore, J. @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV022623884 |
dewey-sort |
3530 |
id |
ELV039684407 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039684407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hedp.2014.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039684407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1818(14)00068-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Espinosa, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radiatively cooled plasma jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kinetic population simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supersonic jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aluminum plasmas</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gil, J.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodriguez, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubiano, J.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendoza, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martel, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minguez, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki-Vidal, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebedev, S.V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swadling, G.F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burdiak, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pickworth, L.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skidmore, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Smolyanskiy, Nikolai ELSEVIER</subfield><subfield code="t">Real-time 3D face tracking based on active appearance model constrained by depth data</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV022623884</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:74-84</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hedp.2014.10.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2015</subfield><subfield code="h">74-84</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Espinosa, G. |
spellingShingle |
Espinosa, G. ddc 530 ddc 004 Elsevier Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
authorStr |
Espinosa, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV022623884 |
format |
electronic Article |
dewey-ones |
530 - Physics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 004 VZ Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas Elsevier |
topic |
ddc 530 ddc 004 Elsevier Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas |
topic_unstemmed |
ddc 530 ddc 004 Elsevier Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas |
topic_browse |
ddc 530 ddc 004 Elsevier Radiatively cooled plasma jet Elsevier Kinetic population simulation Elsevier Supersonic jet Elsevier Aluminum plasmas |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j g jg r r rr j r jr m m mm p m pm e m em f s v fsv s l sl g s gs g b gb l p lp j s js |
hierarchy_parent_title |
Real-time 3D face tracking based on active appearance model constrained by depth data |
hierarchy_parent_id |
ELV022623884 |
dewey-tens |
530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Real-time 3D face tracking based on active appearance model constrained by depth data |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV022623884 |
title |
Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
ctrlnum |
(DE-627)ELV039684407 (ELSEVIER)S1574-1818(14)00068-8 |
title_full |
Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
author_sort |
Espinosa, G. |
journal |
Real-time 3D face tracking based on active appearance model constrained by depth data |
journalStr |
Real-time 3D face tracking based on active appearance model constrained by depth data |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
74 |
author_browse |
Espinosa, G. |
container_volume |
17 |
physical |
11 |
class |
530 530 DE-600 004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Espinosa, G. |
doi_str_mv |
10.1016/j.hedp.2014.10.008 |
dewey-full |
530 004 |
title_sort |
collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
title_auth |
Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
abstract |
A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. |
abstractGer |
A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. |
abstract_unstemmed |
A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 |
title_short |
Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet |
url |
https://doi.org/10.1016/j.hedp.2014.10.008 |
remote_bool |
true |
author2 |
Gil, J.M. Rodriguez, R. Rubiano, J.G. Mendoza, M.A. Martel, P. Minguez, E. Suzuki-Vidal, F. Lebedev, S.V. Swadling, G.F. Burdiak, G. Pickworth, L.A. Skidmore, J. |
author2Str |
Gil, J.M. Rodriguez, R. Rubiano, J.G. Mendoza, M.A. Martel, P. Minguez, E. Suzuki-Vidal, F. Lebedev, S.V. Swadling, G.F. Burdiak, G. Pickworth, L.A. Skidmore, J. |
ppnlink |
ELV022623884 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.hedp.2014.10.008 |
up_date |
2024-07-06T21:14:29.848Z |
_version_ |
1803865785472385024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039684407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hedp.2014.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039684407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1818(14)00068-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Espinosa, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational investigation based on collisional–radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radiatively cooled plasma jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kinetic population simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supersonic jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aluminum plasmas</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gil, J.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodriguez, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubiano, J.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendoza, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martel, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minguez, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki-Vidal, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebedev, S.V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swadling, G.F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burdiak, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pickworth, L.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skidmore, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Smolyanskiy, Nikolai ELSEVIER</subfield><subfield code="t">Real-time 3D face tracking based on active appearance model constrained by depth data</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV022623884</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:74-84</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hedp.2014.10.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2015</subfield><subfield code="h">74-84</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4003525 |