A simple and effective axisymmetric convected Helmholtz integral equation
In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz...
Ausführliche Beschreibung
Autor*in: |
Beldi, Mohamed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
Monopole source in a uniform flow |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Uniqueness of solution of a generalized ⋆-Sylvester matrix equation - De Terán, Fernando ELSEVIER, 2016, Paris |
---|---|
Übergeordnetes Werk: |
volume:343 ; year:2015 ; number:9 ; pages:457-470 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.crme.2015.07.001 |
---|
Katalog-ID: |
ELV039689573 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV039689573 | ||
003 | DE-627 | ||
005 | 20230625225641.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.crme.2015.07.001 |2 doi | |
028 | 5 | 2 | |a GBVA2015007000019.pica |
035 | |a (DE-627)ELV039689573 | ||
035 | |a (ELSEVIER)S1631-0721(15)00073-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 520 |a 540 |a 530 | |
082 | 0 | 4 | |a 520 |q DNB |
082 | 0 | 4 | |a 540 |q DNB |
082 | 0 | 4 | |a 530 |q DNB |
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Beldi, Mohamed |e verfasserin |4 aut | |
245 | 1 | 0 | |a A simple and effective axisymmetric convected Helmholtz integral equation |
264 | 1 | |c 2015transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. | ||
520 | |a In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. | ||
650 | 7 | |a Monopole source in a uniform flow |2 Elsevier | |
650 | 7 | |a Axisymmetric |2 Elsevier | |
650 | 7 | |a Weakly singular integrals |2 Elsevier | |
650 | 7 | |a Axisymmetric convected Green's function |2 Elsevier | |
650 | 7 | |a Convected boundary integral formulation |2 Elsevier | |
700 | 1 | |a Barhoumi, Bassem |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a De Terán, Fernando ELSEVIER |t Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |d 2016 |g Paris |w (DE-627)ELV024881597 |
773 | 1 | 8 | |g volume:343 |g year:2015 |g number:9 |g pages:457-470 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.crme.2015.07.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 343 |j 2015 |e 9 |h 457-470 |g 14 | ||
953 | |2 045F |a 520 |
author_variant |
m b mb |
---|---|
matchkey_str |
beldimohamedbarhoumibassem:2015----:smladfetvaiymticnetdemot |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
52.56 |
publishDate |
2015 |
allfields |
10.1016/j.crme.2015.07.001 doi GBVA2015007000019.pica (DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X DE-627 ger DE-627 rakwb eng 520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl Beldi, Mohamed verfasserin aut A simple and effective axisymmetric convected Helmholtz integral equation 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier Barhoumi, Bassem oth Enthalten in Elsevier De Terán, Fernando ELSEVIER Uniqueness of solution of a generalized ⋆-Sylvester matrix equation 2016 Paris (DE-627)ELV024881597 volume:343 year:2015 number:9 pages:457-470 extent:14 https://doi.org/10.1016/j.crme.2015.07.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 343 2015 9 457-470 14 045F 520 |
spelling |
10.1016/j.crme.2015.07.001 doi GBVA2015007000019.pica (DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X DE-627 ger DE-627 rakwb eng 520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl Beldi, Mohamed verfasserin aut A simple and effective axisymmetric convected Helmholtz integral equation 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier Barhoumi, Bassem oth Enthalten in Elsevier De Terán, Fernando ELSEVIER Uniqueness of solution of a generalized ⋆-Sylvester matrix equation 2016 Paris (DE-627)ELV024881597 volume:343 year:2015 number:9 pages:457-470 extent:14 https://doi.org/10.1016/j.crme.2015.07.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 343 2015 9 457-470 14 045F 520 |
allfields_unstemmed |
10.1016/j.crme.2015.07.001 doi GBVA2015007000019.pica (DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X DE-627 ger DE-627 rakwb eng 520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl Beldi, Mohamed verfasserin aut A simple and effective axisymmetric convected Helmholtz integral equation 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier Barhoumi, Bassem oth Enthalten in Elsevier De Terán, Fernando ELSEVIER Uniqueness of solution of a generalized ⋆-Sylvester matrix equation 2016 Paris (DE-627)ELV024881597 volume:343 year:2015 number:9 pages:457-470 extent:14 https://doi.org/10.1016/j.crme.2015.07.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 343 2015 9 457-470 14 045F 520 |
allfieldsGer |
10.1016/j.crme.2015.07.001 doi GBVA2015007000019.pica (DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X DE-627 ger DE-627 rakwb eng 520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl Beldi, Mohamed verfasserin aut A simple and effective axisymmetric convected Helmholtz integral equation 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier Barhoumi, Bassem oth Enthalten in Elsevier De Terán, Fernando ELSEVIER Uniqueness of solution of a generalized ⋆-Sylvester matrix equation 2016 Paris (DE-627)ELV024881597 volume:343 year:2015 number:9 pages:457-470 extent:14 https://doi.org/10.1016/j.crme.2015.07.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 343 2015 9 457-470 14 045F 520 |
allfieldsSound |
10.1016/j.crme.2015.07.001 doi GBVA2015007000019.pica (DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X DE-627 ger DE-627 rakwb eng 520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl Beldi, Mohamed verfasserin aut A simple and effective axisymmetric convected Helmholtz integral equation 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier Barhoumi, Bassem oth Enthalten in Elsevier De Terán, Fernando ELSEVIER Uniqueness of solution of a generalized ⋆-Sylvester matrix equation 2016 Paris (DE-627)ELV024881597 volume:343 year:2015 number:9 pages:457-470 extent:14 https://doi.org/10.1016/j.crme.2015.07.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 343 2015 9 457-470 14 045F 520 |
language |
English |
source |
Enthalten in Uniqueness of solution of a generalized ⋆-Sylvester matrix equation Paris volume:343 year:2015 number:9 pages:457-470 extent:14 |
sourceStr |
Enthalten in Uniqueness of solution of a generalized ⋆-Sylvester matrix equation Paris volume:343 year:2015 number:9 pages:457-470 extent:14 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Monopole source in a uniform flow Axisymmetric Weakly singular integrals Axisymmetric convected Green's function Convected boundary integral formulation |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |
authorswithroles_txt_mv |
Beldi, Mohamed @@aut@@ Barhoumi, Bassem @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV024881597 |
dewey-sort |
3520 |
id |
ELV039689573 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039689573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.crme.2015.07.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039689573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1631-0721(15)00073-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">520</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beldi, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A simple and effective axisymmetric convected Helmholtz integral equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monopole source in a uniform flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakly singular integrals</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric convected Green's function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convected boundary integral formulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barhoumi, Bassem</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">De Terán, Fernando ELSEVIER</subfield><subfield code="t">Uniqueness of solution of a generalized ⋆-Sylvester matrix equation</subfield><subfield code="d">2016</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV024881597</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:343</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:457-470</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.crme.2015.07.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">343</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">457-470</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">520</subfield></datafield></record></collection>
|
author |
Beldi, Mohamed |
spellingShingle |
Beldi, Mohamed ddc 520 ddc 540 ddc 530 ddc 510 ddc 690 bkl 52.56 Elsevier Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation A simple and effective axisymmetric convected Helmholtz integral equation |
authorStr |
Beldi, Mohamed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV024881597 |
format |
electronic Article |
dewey-ones |
520 - Astronomy & allied sciences 540 - Chemistry & allied sciences 530 - Physics 510 - Mathematics 690 - Buildings 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl A simple and effective axisymmetric convected Helmholtz integral equation Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation Elsevier |
topic |
ddc 520 ddc 540 ddc 530 ddc 510 ddc 690 bkl 52.56 Elsevier Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation |
topic_unstemmed |
ddc 520 ddc 540 ddc 530 ddc 510 ddc 690 bkl 52.56 Elsevier Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation |
topic_browse |
ddc 520 ddc 540 ddc 530 ddc 510 ddc 690 bkl 52.56 Elsevier Monopole source in a uniform flow Elsevier Axisymmetric Elsevier Weakly singular integrals Elsevier Axisymmetric convected Green's function Elsevier Convected boundary integral formulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b b bb |
hierarchy_parent_title |
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |
hierarchy_parent_id |
ELV024881597 |
dewey-tens |
520 - Astronomy 540 - Chemistry 530 - Physics 510 - Mathematics 690 - Building & construction 620 - Engineering |
hierarchy_top_title |
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV024881597 |
title |
A simple and effective axisymmetric convected Helmholtz integral equation |
ctrlnum |
(DE-627)ELV039689573 (ELSEVIER)S1631-0721(15)00073-X |
title_full |
A simple and effective axisymmetric convected Helmholtz integral equation |
author_sort |
Beldi, Mohamed |
journal |
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |
journalStr |
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
457 |
author_browse |
Beldi, Mohamed |
container_volume |
343 |
physical |
14 |
class |
520 540 530 520 DNB 540 DNB 530 DNB 510 VZ 690 VZ 530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Beldi, Mohamed |
doi_str_mv |
10.1016/j.crme.2015.07.001 |
dewey-full |
520 540 530 510 690 620 |
title_sort |
a simple and effective axisymmetric convected helmholtz integral equation |
title_auth |
A simple and effective axisymmetric convected Helmholtz integral equation |
abstract |
In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. |
abstractGer |
In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. |
abstract_unstemmed |
In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
9 |
title_short |
A simple and effective axisymmetric convected Helmholtz integral equation |
url |
https://doi.org/10.1016/j.crme.2015.07.001 |
remote_bool |
true |
author2 |
Barhoumi, Bassem |
author2Str |
Barhoumi, Bassem |
ppnlink |
ELV024881597 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.crme.2015.07.001 |
up_date |
2024-07-06T21:15:17.625Z |
_version_ |
1803865835570200576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV039689573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625225641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.crme.2015.07.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV039689573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1631-0721(15)00073-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">520</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beldi, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A simple and effective axisymmetric convected Helmholtz integral equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monopole source in a uniform flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakly singular integrals</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric convected Green's function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convected boundary integral formulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barhoumi, Bassem</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">De Terán, Fernando ELSEVIER</subfield><subfield code="t">Uniqueness of solution of a generalized ⋆-Sylvester matrix equation</subfield><subfield code="d">2016</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV024881597</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:343</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:457-470</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.crme.2015.07.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">343</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">457-470</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">520</subfield></datafield></record></collection>
|
score |
7.4014387 |