Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now r...
Ausführliche Beschreibung
Autor*in: |
Signal, Bethany [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
18 |
---|
Übergeordnetes Werk: |
Enthalten in: Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory - Dutta, Nalok ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:10 ; pages:620-637 ; extent:18 |
Links: |
---|
DOI / URN: |
10.1016/j.tig.2016.08.004 |
---|
Katalog-ID: |
ELV040007111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040007111 | ||
003 | DE-627 | ||
005 | 20230625230531.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tig.2016.08.004 |2 doi | |
028 | 5 | 2 | |a GBV00000000000145A.pica |
035 | |a (DE-627)ELV040007111 | ||
035 | |a (ELSEVIER)S0168-9525(16)30084-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 333.7 |q VZ |
084 | |a 43.00 |2 bkl | ||
100 | 1 | |a Signal, Bethany |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
264 | 1 | |c 2016transfer abstract | |
300 | |a 18 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. | ||
520 | |a Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. | ||
650 | 7 | |a computational methods |2 Elsevier | |
650 | 7 | |a lncRNA |2 Elsevier | |
650 | 7 | |a regulation |2 Elsevier | |
650 | 7 | |a functional mechanisms. |2 Elsevier | |
700 | 1 | |a Gloss, Brian S. |4 oth | |
700 | 1 | |a Dinger, Marcel E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Dutta, Nalok ELSEVIER |t Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV00781545X |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:10 |g pages:620-637 |g extent:18 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.tig.2016.08.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.00 |j Umweltforschung |j Umweltschutz: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 32 |j 2016 |e 10 |h 620-637 |g 18 | ||
953 | |2 045F |a 570 |
author_variant |
b s bs |
---|---|
matchkey_str |
signalbethanyglossbriansdingermarcele:2016----:opttoaapocefrucinlrdcinncaatrst |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
43.00 |
publishDate |
2016 |
allfields |
10.1016/j.tig.2016.08.004 doi GBV00000000000145A.pica (DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 DE-627 ger DE-627 rakwb eng 570 570 DE-600 333.7 VZ 43.00 bkl Signal, Bethany verfasserin aut Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier Gloss, Brian S. oth Dinger, Marcel E. oth Enthalten in Elsevier Science Dutta, Nalok ELSEVIER Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory 2022 Amsterdam [u.a.] (DE-627)ELV00781545X volume:32 year:2016 number:10 pages:620-637 extent:18 https://doi.org/10.1016/j.tig.2016.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.00 Umweltforschung Umweltschutz: Allgemeines VZ AR 32 2016 10 620-637 18 045F 570 |
spelling |
10.1016/j.tig.2016.08.004 doi GBV00000000000145A.pica (DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 DE-627 ger DE-627 rakwb eng 570 570 DE-600 333.7 VZ 43.00 bkl Signal, Bethany verfasserin aut Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier Gloss, Brian S. oth Dinger, Marcel E. oth Enthalten in Elsevier Science Dutta, Nalok ELSEVIER Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory 2022 Amsterdam [u.a.] (DE-627)ELV00781545X volume:32 year:2016 number:10 pages:620-637 extent:18 https://doi.org/10.1016/j.tig.2016.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.00 Umweltforschung Umweltschutz: Allgemeines VZ AR 32 2016 10 620-637 18 045F 570 |
allfields_unstemmed |
10.1016/j.tig.2016.08.004 doi GBV00000000000145A.pica (DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 DE-627 ger DE-627 rakwb eng 570 570 DE-600 333.7 VZ 43.00 bkl Signal, Bethany verfasserin aut Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier Gloss, Brian S. oth Dinger, Marcel E. oth Enthalten in Elsevier Science Dutta, Nalok ELSEVIER Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory 2022 Amsterdam [u.a.] (DE-627)ELV00781545X volume:32 year:2016 number:10 pages:620-637 extent:18 https://doi.org/10.1016/j.tig.2016.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.00 Umweltforschung Umweltschutz: Allgemeines VZ AR 32 2016 10 620-637 18 045F 570 |
allfieldsGer |
10.1016/j.tig.2016.08.004 doi GBV00000000000145A.pica (DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 DE-627 ger DE-627 rakwb eng 570 570 DE-600 333.7 VZ 43.00 bkl Signal, Bethany verfasserin aut Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier Gloss, Brian S. oth Dinger, Marcel E. oth Enthalten in Elsevier Science Dutta, Nalok ELSEVIER Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory 2022 Amsterdam [u.a.] (DE-627)ELV00781545X volume:32 year:2016 number:10 pages:620-637 extent:18 https://doi.org/10.1016/j.tig.2016.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.00 Umweltforschung Umweltschutz: Allgemeines VZ AR 32 2016 10 620-637 18 045F 570 |
allfieldsSound |
10.1016/j.tig.2016.08.004 doi GBV00000000000145A.pica (DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 DE-627 ger DE-627 rakwb eng 570 570 DE-600 333.7 VZ 43.00 bkl Signal, Bethany verfasserin aut Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier Gloss, Brian S. oth Dinger, Marcel E. oth Enthalten in Elsevier Science Dutta, Nalok ELSEVIER Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory 2022 Amsterdam [u.a.] (DE-627)ELV00781545X volume:32 year:2016 number:10 pages:620-637 extent:18 https://doi.org/10.1016/j.tig.2016.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.00 Umweltforschung Umweltschutz: Allgemeines VZ AR 32 2016 10 620-637 18 045F 570 |
language |
English |
source |
Enthalten in Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory Amsterdam [u.a.] volume:32 year:2016 number:10 pages:620-637 extent:18 |
sourceStr |
Enthalten in Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory Amsterdam [u.a.] volume:32 year:2016 number:10 pages:620-637 extent:18 |
format_phy_str_mv |
Article |
bklname |
Umweltforschung Umweltschutz: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
computational methods lncRNA regulation functional mechanisms. |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |
authorswithroles_txt_mv |
Signal, Bethany @@aut@@ Gloss, Brian S. @@oth@@ Dinger, Marcel E. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV00781545X |
dewey-sort |
3570 |
id |
ELV040007111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040007111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tig.2016.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000145A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040007111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9525(16)30084-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Signal, Bethany</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">computational methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">lncRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">regulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">functional mechanisms.</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gloss, Brian S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dinger, Marcel E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Dutta, Nalok ELSEVIER</subfield><subfield code="t">Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00781545X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:620-637</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tig.2016.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="j">Umweltforschung</subfield><subfield code="j">Umweltschutz: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">10</subfield><subfield code="h">620-637</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Signal, Bethany |
spellingShingle |
Signal, Bethany ddc 570 ddc 333.7 bkl 43.00 Elsevier computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
authorStr |
Signal, Bethany |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00781545X |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 333.7 VZ 43.00 bkl Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. Elsevier |
topic |
ddc 570 ddc 333.7 bkl 43.00 Elsevier computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. |
topic_unstemmed |
ddc 570 ddc 333.7 bkl 43.00 Elsevier computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. |
topic_browse |
ddc 570 ddc 333.7 bkl 43.00 Elsevier computational methods Elsevier lncRNA Elsevier regulation Elsevier functional mechanisms. |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b s g bs bsg m e d me med |
hierarchy_parent_title |
Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |
hierarchy_parent_id |
ELV00781545X |
dewey-tens |
570 - Life sciences; biology 330 - Economics |
hierarchy_top_title |
Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00781545X |
title |
Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
ctrlnum |
(DE-627)ELV040007111 (ELSEVIER)S0168-9525(16)30084-1 |
title_full |
Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
author_sort |
Signal, Bethany |
journal |
Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |
journalStr |
Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
620 |
author_browse |
Signal, Bethany |
container_volume |
32 |
physical |
18 |
class |
570 570 DE-600 333.7 VZ 43.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Signal, Bethany |
doi_str_mv |
10.1016/j.tig.2016.08.004 |
dewey-full |
570 333.7 |
title_sort |
computational approaches for functional prediction and characterisation of long noncoding rnas |
title_auth |
Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
abstract |
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. |
abstractGer |
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. |
abstract_unstemmed |
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
10 |
title_short |
Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs |
url |
https://doi.org/10.1016/j.tig.2016.08.004 |
remote_bool |
true |
author2 |
Gloss, Brian S. Dinger, Marcel E. |
author2Str |
Gloss, Brian S. Dinger, Marcel E. |
ppnlink |
ELV00781545X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.tig.2016.08.004 |
up_date |
2024-07-06T22:02:18.138Z |
_version_ |
1803868793092440064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040007111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tig.2016.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000145A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040007111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9525(16)30084-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Signal, Bethany</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">computational methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">lncRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">regulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">functional mechanisms.</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gloss, Brian S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dinger, Marcel E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Dutta, Nalok ELSEVIER</subfield><subfield code="t">Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00781545X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:620-637</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tig.2016.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="j">Umweltforschung</subfield><subfield code="j">Umweltschutz: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">10</subfield><subfield code="h">620-637</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4000263 |