On the regularity of human mobility
Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London,...
Ausführliche Beschreibung
Autor*in: |
Mucelli Rezende Oliveira, Eduardo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
18 |
---|
Übergeordnetes Werk: |
Enthalten in: BIG-OH: BInarization of gradient orientation histograms - Baber, Junaid ELSEVIER, 2014transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2016 ; pages:73-90 ; extent:18 |
Links: |
---|
DOI / URN: |
10.1016/j.pmcj.2016.04.005 |
---|
Katalog-ID: |
ELV04002668X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04002668X | ||
003 | DE-627 | ||
005 | 20230625230619.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.pmcj.2016.04.005 |2 doi | |
028 | 5 | 2 | |a GBV00000000000110A.pica |
035 | |a (DE-627)ELV04002668X | ||
035 | |a (ELSEVIER)S1574-1192(16)30028-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Mucelli Rezende Oliveira, Eduardo |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the regularity of human mobility |
264 | 1 | |c 2016transfer abstract | |
300 | |a 18 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. | ||
520 | |a Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. | ||
650 | 7 | |a Dataset |2 Elsevier | |
650 | 7 | |a Analysis |2 Elsevier | |
650 | 7 | |a Mobility |2 Elsevier | |
650 | 7 | |a Human mobility |2 Elsevier | |
700 | 1 | |a Carneiro Viana, Aline |4 oth | |
700 | 1 | |a Sarraute, Carlos |4 oth | |
700 | 1 | |a Brea, Jorge |4 oth | |
700 | 1 | |a Alvarez-Hamelin, Ignacio |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Baber, Junaid ELSEVIER |t BIG-OH: BInarization of gradient orientation histograms |d 2014transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV02262399X |
773 | 1 | 8 | |g volume:33 |g year:2016 |g pages:73-90 |g extent:18 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.pmcj.2016.04.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_78 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_300 | ||
951 | |a AR | ||
952 | |d 33 |j 2016 |h 73-90 |g 18 | ||
953 | |2 045F |a 004 |
author_variant |
r o e m roe roem |
---|---|
matchkey_str |
mucellirezendeoliveiraeduardocarneirovia:2016----:nhrglrtohm |
hierarchy_sort_str |
2016transfer abstract |
publishDate |
2016 |
allfields |
10.1016/j.pmcj.2016.04.005 doi GBV00000000000110A.pica (DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ Mucelli Rezende Oliveira, Eduardo verfasserin aut On the regularity of human mobility 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier Carneiro Viana, Aline oth Sarraute, Carlos oth Brea, Jorge oth Alvarez-Hamelin, Ignacio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:33 year:2016 pages:73-90 extent:18 https://doi.org/10.1016/j.pmcj.2016.04.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 33 2016 73-90 18 045F 004 |
spelling |
10.1016/j.pmcj.2016.04.005 doi GBV00000000000110A.pica (DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ Mucelli Rezende Oliveira, Eduardo verfasserin aut On the regularity of human mobility 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier Carneiro Viana, Aline oth Sarraute, Carlos oth Brea, Jorge oth Alvarez-Hamelin, Ignacio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:33 year:2016 pages:73-90 extent:18 https://doi.org/10.1016/j.pmcj.2016.04.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 33 2016 73-90 18 045F 004 |
allfields_unstemmed |
10.1016/j.pmcj.2016.04.005 doi GBV00000000000110A.pica (DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ Mucelli Rezende Oliveira, Eduardo verfasserin aut On the regularity of human mobility 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier Carneiro Viana, Aline oth Sarraute, Carlos oth Brea, Jorge oth Alvarez-Hamelin, Ignacio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:33 year:2016 pages:73-90 extent:18 https://doi.org/10.1016/j.pmcj.2016.04.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 33 2016 73-90 18 045F 004 |
allfieldsGer |
10.1016/j.pmcj.2016.04.005 doi GBV00000000000110A.pica (DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ Mucelli Rezende Oliveira, Eduardo verfasserin aut On the regularity of human mobility 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier Carneiro Viana, Aline oth Sarraute, Carlos oth Brea, Jorge oth Alvarez-Hamelin, Ignacio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:33 year:2016 pages:73-90 extent:18 https://doi.org/10.1016/j.pmcj.2016.04.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 33 2016 73-90 18 045F 004 |
allfieldsSound |
10.1016/j.pmcj.2016.04.005 doi GBV00000000000110A.pica (DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ Mucelli Rezende Oliveira, Eduardo verfasserin aut On the regularity of human mobility 2016transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier Carneiro Viana, Aline oth Sarraute, Carlos oth Brea, Jorge oth Alvarez-Hamelin, Ignacio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:33 year:2016 pages:73-90 extent:18 https://doi.org/10.1016/j.pmcj.2016.04.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 33 2016 73-90 18 045F 004 |
language |
English |
source |
Enthalten in BIG-OH: BInarization of gradient orientation histograms Amsterdam [u.a.] volume:33 year:2016 pages:73-90 extent:18 |
sourceStr |
Enthalten in BIG-OH: BInarization of gradient orientation histograms Amsterdam [u.a.] volume:33 year:2016 pages:73-90 extent:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dataset Analysis Mobility Human mobility |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
BIG-OH: BInarization of gradient orientation histograms |
authorswithroles_txt_mv |
Mucelli Rezende Oliveira, Eduardo @@aut@@ Carneiro Viana, Aline @@oth@@ Sarraute, Carlos @@oth@@ Brea, Jorge @@oth@@ Alvarez-Hamelin, Ignacio @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV02262399X |
dewey-sort |
14 |
id |
ELV04002668X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04002668X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.pmcj.2016.04.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000110A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04002668X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1192(16)30028-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mucelli Rezende Oliveira, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the regularity of human mobility</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dataset</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Human mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carneiro Viana, Aline</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarraute, Carlos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brea, Jorge</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alvarez-Hamelin, Ignacio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Baber, Junaid ELSEVIER</subfield><subfield code="t">BIG-OH: BInarization of gradient orientation histograms</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV02262399X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:73-90</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.pmcj.2016.04.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_300</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2016</subfield><subfield code="h">73-90</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Mucelli Rezende Oliveira, Eduardo |
spellingShingle |
Mucelli Rezende Oliveira, Eduardo ddc 004 Elsevier Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility On the regularity of human mobility |
authorStr |
Mucelli Rezende Oliveira, Eduardo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV02262399X |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 004 VZ On the regularity of human mobility Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility Elsevier |
topic |
ddc 004 Elsevier Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility |
topic_unstemmed |
ddc 004 Elsevier Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility |
topic_browse |
ddc 004 Elsevier Dataset Elsevier Analysis Elsevier Mobility Elsevier Human mobility |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v a c va vac c s cs j b jb i a h iah |
hierarchy_parent_title |
BIG-OH: BInarization of gradient orientation histograms |
hierarchy_parent_id |
ELV02262399X |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
BIG-OH: BInarization of gradient orientation histograms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV02262399X |
title |
On the regularity of human mobility |
ctrlnum |
(DE-627)ELV04002668X (ELSEVIER)S1574-1192(16)30028-1 |
title_full |
On the regularity of human mobility |
author_sort |
Mucelli Rezende Oliveira, Eduardo |
journal |
BIG-OH: BInarization of gradient orientation histograms |
journalStr |
BIG-OH: BInarization of gradient orientation histograms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
73 |
author_browse |
Mucelli Rezende Oliveira, Eduardo |
container_volume |
33 |
physical |
18 |
class |
004 004 DE-600 004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Mucelli Rezende Oliveira, Eduardo |
doi_str_mv |
10.1016/j.pmcj.2016.04.005 |
dewey-full |
004 |
title_sort |
on the regularity of human mobility |
title_auth |
On the regularity of human mobility |
abstract |
Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. |
abstractGer |
Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. |
abstract_unstemmed |
Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 |
title_short |
On the regularity of human mobility |
url |
https://doi.org/10.1016/j.pmcj.2016.04.005 |
remote_bool |
true |
author2 |
Carneiro Viana, Aline Sarraute, Carlos Brea, Jorge Alvarez-Hamelin, Ignacio |
author2Str |
Carneiro Viana, Aline Sarraute, Carlos Brea, Jorge Alvarez-Hamelin, Ignacio |
ppnlink |
ELV02262399X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.pmcj.2016.04.005 |
up_date |
2024-07-06T22:05:33.959Z |
_version_ |
1803868998426689536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04002668X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.pmcj.2016.04.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000110A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04002668X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1192(16)30028-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mucelli Rezende Oliveira, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the regularity of human mobility</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people’s mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual’s urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people’s tendency to revisit few favorite venues using the shortest-path available.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dataset</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Human mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carneiro Viana, Aline</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarraute, Carlos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brea, Jorge</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alvarez-Hamelin, Ignacio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Baber, Junaid ELSEVIER</subfield><subfield code="t">BIG-OH: BInarization of gradient orientation histograms</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV02262399X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:73-90</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.pmcj.2016.04.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_300</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2016</subfield><subfield code="h">73-90</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.4019136 |