Nonparametric multiple change point estimation in highly dependent time series
Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence o...
Ausführliche Beschreibung
Autor*in: |
Khaleghi, Azadeh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries - Schweiss, Rüdiger ELSEVIER, 2015transfer abstract, the journal of the EATCS, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:620 ; year:2016 ; day:21 ; month:03 ; pages:119-133 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.tcs.2015.10.041 |
---|
Katalog-ID: |
ELV040059081 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040059081 | ||
003 | DE-627 | ||
005 | 20230624070351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tcs.2015.10.041 |2 doi | |
028 | 5 | 2 | |a GBVA2016010000018.pica |
035 | |a (DE-627)ELV040059081 | ||
035 | |a (ELSEVIER)S0304-3975(15)00947-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Khaleghi, Azadeh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonparametric multiple change point estimation in highly dependent time series |
264 | 1 | |c 2016 | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. | ||
650 | 7 | |a Stationary ergodic time series |2 Elsevier | |
650 | 7 | |a Consistency |2 Elsevier | |
650 | 7 | |a Change point analysis |2 Elsevier | |
650 | 7 | |a Unsupervised learning |2 Elsevier | |
700 | 1 | |a Ryabko, Daniil |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Schweiss, Rüdiger ELSEVIER |t Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |d 2015transfer abstract |d the journal of the EATCS |g Amsterdam [u.a.] |w (DE-627)ELV013125583 |
773 | 1 | 8 | |g volume:620 |g year:2016 |g day:21 |g month:03 |g pages:119-133 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.tcs.2015.10.041 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 620 |j 2016 |b 21 |c 0321 |h 119-133 |g 15 | ||
953 | |2 045F |a 004 |
author_variant |
a k ak |
---|---|
matchkey_str |
khaleghiazadehryabkodaniil:2016----:oprmtimlilcagpitsiainnihy |
hierarchy_sort_str |
2016 |
bklnumber |
50.92 |
publishDate |
2016 |
allfields |
10.1016/j.tcs.2015.10.041 doi GBVA2016010000018.pica (DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Khaleghi, Azadeh verfasserin aut Nonparametric multiple change point estimation in highly dependent time series 2016 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier Ryabko, Daniil oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 https://doi.org/10.1016/j.tcs.2015.10.041 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 620 2016 21 0321 119-133 15 045F 004 |
spelling |
10.1016/j.tcs.2015.10.041 doi GBVA2016010000018.pica (DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Khaleghi, Azadeh verfasserin aut Nonparametric multiple change point estimation in highly dependent time series 2016 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier Ryabko, Daniil oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 https://doi.org/10.1016/j.tcs.2015.10.041 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 620 2016 21 0321 119-133 15 045F 004 |
allfields_unstemmed |
10.1016/j.tcs.2015.10.041 doi GBVA2016010000018.pica (DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Khaleghi, Azadeh verfasserin aut Nonparametric multiple change point estimation in highly dependent time series 2016 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier Ryabko, Daniil oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 https://doi.org/10.1016/j.tcs.2015.10.041 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 620 2016 21 0321 119-133 15 045F 004 |
allfieldsGer |
10.1016/j.tcs.2015.10.041 doi GBVA2016010000018.pica (DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Khaleghi, Azadeh verfasserin aut Nonparametric multiple change point estimation in highly dependent time series 2016 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier Ryabko, Daniil oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 https://doi.org/10.1016/j.tcs.2015.10.041 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 620 2016 21 0321 119-133 15 045F 004 |
allfieldsSound |
10.1016/j.tcs.2015.10.041 doi GBVA2016010000018.pica (DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Khaleghi, Azadeh verfasserin aut Nonparametric multiple change point estimation in highly dependent time series 2016 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier Ryabko, Daniil oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 https://doi.org/10.1016/j.tcs.2015.10.041 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 620 2016 21 0321 119-133 15 045F 004 |
language |
English |
source |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 |
sourceStr |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:620 year:2016 day:21 month:03 pages:119-133 extent:15 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Stationary ergodic time series Consistency Change point analysis Unsupervised learning |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
authorswithroles_txt_mv |
Khaleghi, Azadeh @@aut@@ Ryabko, Daniil @@oth@@ |
publishDateDaySort_date |
2016-01-21T00:00:00Z |
hierarchy_top_id |
ELV013125583 |
dewey-sort |
14 |
id |
ELV040059081 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040059081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624070351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2015.10.041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016010000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040059081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(15)00947-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khaleghi, Azadeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric multiple change point estimation in highly dependent time series</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stationary ergodic time series</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Consistency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Change point analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unsupervised learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryabko, Daniil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:620</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:119-133</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2015.10.041</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">620</subfield><subfield code="j">2016</subfield><subfield code="b">21</subfield><subfield code="c">0321</subfield><subfield code="h">119-133</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Khaleghi, Azadeh |
spellingShingle |
Khaleghi, Azadeh ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Nonparametric multiple change point estimation in highly dependent time series |
authorStr |
Khaleghi, Azadeh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013125583 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl Nonparametric multiple change point estimation in highly dependent time series Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning Elsevier |
topic |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning |
topic_unstemmed |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning |
topic_browse |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Stationary ergodic time series Elsevier Consistency Elsevier Change point analysis Elsevier Unsupervised learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d r dr |
hierarchy_parent_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
hierarchy_parent_id |
ELV013125583 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013125583 |
title |
Nonparametric multiple change point estimation in highly dependent time series |
ctrlnum |
(DE-627)ELV040059081 (ELSEVIER)S0304-3975(15)00947-0 |
title_full |
Nonparametric multiple change point estimation in highly dependent time series |
author_sort |
Khaleghi, Azadeh |
journal |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
journalStr |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
119 |
author_browse |
Khaleghi, Azadeh |
container_volume |
620 |
physical |
15 |
class |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khaleghi, Azadeh |
doi_str_mv |
10.1016/j.tcs.2015.10.041 |
dewey-full |
004 620 690 |
title_sort |
nonparametric multiple change point estimation in highly dependent time series |
title_auth |
Nonparametric multiple change point estimation in highly dependent time series |
abstract |
Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. |
abstractGer |
Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. |
abstract_unstemmed |
Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 |
title_short |
Nonparametric multiple change point estimation in highly dependent time series |
url |
https://doi.org/10.1016/j.tcs.2015.10.041 |
remote_bool |
true |
author2 |
Ryabko, Daniil |
author2Str |
Ryabko, Daniil |
ppnlink |
ELV013125583 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.tcs.2015.10.041 |
up_date |
2024-07-06T16:33:07.830Z |
_version_ |
1803848083397672960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040059081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624070351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2015.10.041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016010000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040059081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(15)00947-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khaleghi, Azadeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric multiple change point estimation in highly dependent time series</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given a heterogeneous time-series sample, the objective is to find points in time, called change points, where the probability distribution generating the data has changed. The data are assumed to have been generated by arbitrary unknown stationary ergodic distributions. No modelling, independence or mixing assumptions are made. A novel, computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in this general framework. The theoretical results are complemented with experimental evaluations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stationary ergodic time series</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Consistency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Change point analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unsupervised learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryabko, Daniil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:620</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:119-133</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2015.10.041</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">620</subfield><subfield code="j">2016</subfield><subfield code="b">21</subfield><subfield code="c">0321</subfield><subfield code="h">119-133</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.4010057 |