Proofs of the stability and convergence of a weakened weak method using PIM shape functions
Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothi...
Ausführliche Beschreibung
Autor*in: |
Yue, J.H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
19 |
---|
Übergeordnetes Werk: |
Enthalten in: Growth and welfare implications of sector-specific innovations - Güner, İlhan ELSEVIER, 2022, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:72 ; year:2016 ; number:4 ; pages:933-951 ; extent:19 |
Links: |
---|
DOI / URN: |
10.1016/j.camwa.2016.06.002 |
---|
Katalog-ID: |
ELV040107884 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040107884 | ||
003 | DE-627 | ||
005 | 20230625230840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.camwa.2016.06.002 |2 doi | |
028 | 5 | 2 | |a GBVA2016014000003.pica |
035 | |a (DE-627)ELV040107884 | ||
035 | |a (ELSEVIER)S0898-1221(16)30334-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 |a 004 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 330 |q VZ |
084 | |a 83.03 |2 bkl | ||
084 | |a 83.10 |2 bkl | ||
100 | 1 | |a Yue, J.H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
264 | 1 | |c 2016transfer abstract | |
300 | |a 19 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. | ||
520 | |a Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. | ||
650 | 7 | |a Stability |2 Elsevier | |
650 | 7 | |a G space |2 Elsevier | |
650 | 7 | |a Smoothed point interpolation method |2 Elsevier | |
650 | 7 | |a Weakened weak form |2 Elsevier | |
650 | 7 | |a Convergence |2 Elsevier | |
700 | 1 | |a Li, M. |4 oth | |
700 | 1 | |a Liu, G.R. |4 oth | |
700 | 1 | |a Niu, R.P. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Güner, İlhan ELSEVIER |t Growth and welfare implications of sector-specific innovations |d 2022 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV008987521 |
773 | 1 | 8 | |g volume:72 |g year:2016 |g number:4 |g pages:933-951 |g extent:19 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.camwa.2016.06.002 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 83.03 |j Methoden und Techniken der Volkswirtschaft |q VZ |
936 | b | k | |a 83.10 |j Wirtschaftstheorie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 72 |j 2016 |e 4 |h 933-951 |g 19 | ||
953 | |2 045F |a 510 |
author_variant |
j y jy |
---|---|
matchkey_str |
yuejhlimliugrniurp:2016----:rosfhsaiiyncnegnefwaeewamtou |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
83.03 83.10 |
publishDate |
2016 |
allfields |
10.1016/j.camwa.2016.06.002 doi GBVA2016014000003.pica (DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 DE-627 ger DE-627 rakwb eng 510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Yue, J.H. verfasserin aut Proofs of the stability and convergence of a weakened weak method using PIM shape functions 2016transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier Li, M. oth Liu, G.R. oth Niu, R.P. oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:72 year:2016 number:4 pages:933-951 extent:19 https://doi.org/10.1016/j.camwa.2016.06.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 72 2016 4 933-951 19 045F 510 |
spelling |
10.1016/j.camwa.2016.06.002 doi GBVA2016014000003.pica (DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 DE-627 ger DE-627 rakwb eng 510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Yue, J.H. verfasserin aut Proofs of the stability and convergence of a weakened weak method using PIM shape functions 2016transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier Li, M. oth Liu, G.R. oth Niu, R.P. oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:72 year:2016 number:4 pages:933-951 extent:19 https://doi.org/10.1016/j.camwa.2016.06.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 72 2016 4 933-951 19 045F 510 |
allfields_unstemmed |
10.1016/j.camwa.2016.06.002 doi GBVA2016014000003.pica (DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 DE-627 ger DE-627 rakwb eng 510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Yue, J.H. verfasserin aut Proofs of the stability and convergence of a weakened weak method using PIM shape functions 2016transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier Li, M. oth Liu, G.R. oth Niu, R.P. oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:72 year:2016 number:4 pages:933-951 extent:19 https://doi.org/10.1016/j.camwa.2016.06.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 72 2016 4 933-951 19 045F 510 |
allfieldsGer |
10.1016/j.camwa.2016.06.002 doi GBVA2016014000003.pica (DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 DE-627 ger DE-627 rakwb eng 510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Yue, J.H. verfasserin aut Proofs of the stability and convergence of a weakened weak method using PIM shape functions 2016transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier Li, M. oth Liu, G.R. oth Niu, R.P. oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:72 year:2016 number:4 pages:933-951 extent:19 https://doi.org/10.1016/j.camwa.2016.06.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 72 2016 4 933-951 19 045F 510 |
allfieldsSound |
10.1016/j.camwa.2016.06.002 doi GBVA2016014000003.pica (DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 DE-627 ger DE-627 rakwb eng 510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Yue, J.H. verfasserin aut Proofs of the stability and convergence of a weakened weak method using PIM shape functions 2016transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier Li, M. oth Liu, G.R. oth Niu, R.P. oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:72 year:2016 number:4 pages:933-951 extent:19 https://doi.org/10.1016/j.camwa.2016.06.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 72 2016 4 933-951 19 045F 510 |
language |
English |
source |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:72 year:2016 number:4 pages:933-951 extent:19 |
sourceStr |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:72 year:2016 number:4 pages:933-951 extent:19 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Volkswirtschaft Wirtschaftstheorie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Stability G space Smoothed point interpolation method Weakened weak form Convergence |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Growth and welfare implications of sector-specific innovations |
authorswithroles_txt_mv |
Yue, J.H. @@aut@@ Li, M. @@oth@@ Liu, G.R. @@oth@@ Niu, R.P. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV008987521 |
dewey-sort |
3510 |
id |
ELV040107884 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040107884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2016.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000003.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040107884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(16)30334-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yue, J.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proofs of the stability and convergence of a weakened weak method using PIM shape functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G space</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smoothed point interpolation method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakened weak form</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, G.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, R.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:72</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:933-951</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2016.06.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">72</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">933-951</subfield><subfield code="g">19</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Yue, J.H. |
spellingShingle |
Yue, J.H. ddc 510 ddc 004 ddc 330 bkl 83.03 bkl 83.10 Elsevier Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
authorStr |
Yue, J.H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008987521 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl Proofs of the stability and convergence of a weakened weak method using PIM shape functions Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence Elsevier |
topic |
ddc 510 ddc 004 ddc 330 bkl 83.03 bkl 83.10 Elsevier Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence |
topic_unstemmed |
ddc 510 ddc 004 ddc 330 bkl 83.03 bkl 83.10 Elsevier Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence |
topic_browse |
ddc 510 ddc 004 ddc 330 bkl 83.03 bkl 83.10 Elsevier Stability Elsevier G space Elsevier Smoothed point interpolation method Elsevier Weakened weak form Elsevier Convergence |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m l ml g l gl r n rn |
hierarchy_parent_title |
Growth and welfare implications of sector-specific innovations |
hierarchy_parent_id |
ELV008987521 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems 330 - Economics |
hierarchy_top_title |
Growth and welfare implications of sector-specific innovations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008987521 |
title |
Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
ctrlnum |
(DE-627)ELV040107884 (ELSEVIER)S0898-1221(16)30334-0 |
title_full |
Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
author_sort |
Yue, J.H. |
journal |
Growth and welfare implications of sector-specific innovations |
journalStr |
Growth and welfare implications of sector-specific innovations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
933 |
author_browse |
Yue, J.H. |
container_volume |
72 |
physical |
19 |
class |
510 004 510 DE-600 004 DE-600 330 VZ 83.03 bkl 83.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yue, J.H. |
doi_str_mv |
10.1016/j.camwa.2016.06.002 |
dewey-full |
510 004 330 |
title_sort |
proofs of the stability and convergence of a weakened weak method using pim shape functions |
title_auth |
Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
abstract |
Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. |
abstractGer |
Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. |
abstract_unstemmed |
Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
4 |
title_short |
Proofs of the stability and convergence of a weakened weak method using PIM shape functions |
url |
https://doi.org/10.1016/j.camwa.2016.06.002 |
remote_bool |
true |
author2 |
Li, M. Liu, G.R. Niu, R.P. |
author2Str |
Li, M. Liu, G.R. Niu, R.P. |
ppnlink |
ELV008987521 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.camwa.2016.06.002 |
up_date |
2024-07-06T16:40:18.642Z |
_version_ |
1803848535132602368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040107884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625230840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2016.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000003.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040107884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(16)30334-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yue, J.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proofs of the stability and convergence of a weakened weak method using PIM shape functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the smoothed point interpolation method (S-PIM) regarded as a weakened weak ( W 2 ) formulation method has been developed for solving engineering mechanics problems. It works well with distorted meshes. The G space theory offers the theoretical base for all the W 2 methods that use smoothing operations. In this paper, we first prove mathematically that if a function is of Lipschitz continuity and its interpolated function is established using PIM shape functions, then the interpolated function belongs to a G h , 0 s space. Our proofs work for smoothing operations that are the node-based, cell-based and a mixture of both smoothing domains. In addition, when mesh is refined under a given regularity condition, a sufficiently smooth target function can be approximated by its interpolated function with arbitrary accuracy, meaning that the interpolation error norm approaches to zero. Therefore, the stability and convergence of a W 2 method using PIM shape functions and G space theory can be ensured.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G space</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smoothed point interpolation method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakened weak form</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, G.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, R.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:72</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:933-951</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2016.06.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">72</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">933-951</subfield><subfield code="g">19</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.401164 |