Fuzzy clustering as rational partition method for QSAR
Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). F...
Ausführliche Beschreibung
Autor*in: |
Pérez-Garrido, Alfonso [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Migration and characterisation of nanosilver from food containers by AF4-ICP-MS - Artiaga, G. ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:166 ; year:2017 ; day:15 ; month:07 ; pages:1-6 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.chemolab.2017.04.006 |
---|
Katalog-ID: |
ELV040340961 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040340961 | ||
003 | DE-627 | ||
005 | 20230625231605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemolab.2017.04.006 |2 doi | |
028 | 5 | 2 | |a GBV00000000000076A.pica |
035 | |a (DE-627)ELV040340961 | ||
035 | |a (ELSEVIER)S0169-7439(17)30193-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Pérez-Garrido, Alfonso |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fuzzy clustering as rational partition method for QSAR |
264 | 1 | |c 2017transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. | ||
520 | |a Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. | ||
650 | 7 | |a Validation |2 Elsevier | |
650 | 7 | |a Minimal Test Set Dissimilarity |2 Elsevier | |
650 | 7 | |a Fuzzy clustering |2 Elsevier | |
650 | 7 | |a Extreme Learning Machine |2 Elsevier | |
650 | 7 | |a QSAR |2 Elsevier | |
650 | 7 | |a Data partition |2 Elsevier | |
650 | 7 | |a Regression |2 Elsevier | |
650 | 7 | |a k-means clustering |2 Elsevier | |
700 | 1 | |a Girón-Rodríguez, Francisco |4 oth | |
700 | 1 | |a Bueno-Crespo, Andrés |4 oth | |
700 | 1 | |a Soto, Jesús |4 oth | |
700 | 1 | |a Pérez-Sánchez, Horacio |4 oth | |
700 | 1 | |a Helguera, Aliuska Morales |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Artiaga, G. ELSEVIER |t Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV012980455 |
773 | 1 | 8 | |g volume:166 |g year:2017 |g day:15 |g month:07 |g pages:1-6 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.chemolab.2017.04.006 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 166 |j 2017 |b 15 |c 0715 |h 1-6 |g 6 | ||
953 | |2 045F |a 540 |
author_variant |
a p g apg |
---|---|
matchkey_str |
prezgarridoalfonsogirnrodrguezfranciscob:2017----:uzcutrnartoaprii |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
35.00 |
publishDate |
2017 |
allfields |
10.1016/j.chemolab.2017.04.006 doi GBV00000000000076A.pica (DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 DE-627 ger DE-627 rakwb eng 540 540 DE-600 540 VZ 35.00 bkl Pérez-Garrido, Alfonso verfasserin aut Fuzzy clustering as rational partition method for QSAR 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier Girón-Rodríguez, Francisco oth Bueno-Crespo, Andrés oth Soto, Jesús oth Pérez-Sánchez, Horacio oth Helguera, Aliuska Morales oth Enthalten in Elsevier Science Artiaga, G. ELSEVIER Migration and characterisation of nanosilver from food containers by AF4-ICP-MS 2015 Amsterdam [u.a.] (DE-627)ELV012980455 volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 https://doi.org/10.1016/j.chemolab.2017.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 35.00 Chemie: Allgemeines VZ AR 166 2017 15 0715 1-6 6 045F 540 |
spelling |
10.1016/j.chemolab.2017.04.006 doi GBV00000000000076A.pica (DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 DE-627 ger DE-627 rakwb eng 540 540 DE-600 540 VZ 35.00 bkl Pérez-Garrido, Alfonso verfasserin aut Fuzzy clustering as rational partition method for QSAR 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier Girón-Rodríguez, Francisco oth Bueno-Crespo, Andrés oth Soto, Jesús oth Pérez-Sánchez, Horacio oth Helguera, Aliuska Morales oth Enthalten in Elsevier Science Artiaga, G. ELSEVIER Migration and characterisation of nanosilver from food containers by AF4-ICP-MS 2015 Amsterdam [u.a.] (DE-627)ELV012980455 volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 https://doi.org/10.1016/j.chemolab.2017.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 35.00 Chemie: Allgemeines VZ AR 166 2017 15 0715 1-6 6 045F 540 |
allfields_unstemmed |
10.1016/j.chemolab.2017.04.006 doi GBV00000000000076A.pica (DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 DE-627 ger DE-627 rakwb eng 540 540 DE-600 540 VZ 35.00 bkl Pérez-Garrido, Alfonso verfasserin aut Fuzzy clustering as rational partition method for QSAR 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier Girón-Rodríguez, Francisco oth Bueno-Crespo, Andrés oth Soto, Jesús oth Pérez-Sánchez, Horacio oth Helguera, Aliuska Morales oth Enthalten in Elsevier Science Artiaga, G. ELSEVIER Migration and characterisation of nanosilver from food containers by AF4-ICP-MS 2015 Amsterdam [u.a.] (DE-627)ELV012980455 volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 https://doi.org/10.1016/j.chemolab.2017.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 35.00 Chemie: Allgemeines VZ AR 166 2017 15 0715 1-6 6 045F 540 |
allfieldsGer |
10.1016/j.chemolab.2017.04.006 doi GBV00000000000076A.pica (DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 DE-627 ger DE-627 rakwb eng 540 540 DE-600 540 VZ 35.00 bkl Pérez-Garrido, Alfonso verfasserin aut Fuzzy clustering as rational partition method for QSAR 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier Girón-Rodríguez, Francisco oth Bueno-Crespo, Andrés oth Soto, Jesús oth Pérez-Sánchez, Horacio oth Helguera, Aliuska Morales oth Enthalten in Elsevier Science Artiaga, G. ELSEVIER Migration and characterisation of nanosilver from food containers by AF4-ICP-MS 2015 Amsterdam [u.a.] (DE-627)ELV012980455 volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 https://doi.org/10.1016/j.chemolab.2017.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 35.00 Chemie: Allgemeines VZ AR 166 2017 15 0715 1-6 6 045F 540 |
allfieldsSound |
10.1016/j.chemolab.2017.04.006 doi GBV00000000000076A.pica (DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 DE-627 ger DE-627 rakwb eng 540 540 DE-600 540 VZ 35.00 bkl Pérez-Garrido, Alfonso verfasserin aut Fuzzy clustering as rational partition method for QSAR 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier Girón-Rodríguez, Francisco oth Bueno-Crespo, Andrés oth Soto, Jesús oth Pérez-Sánchez, Horacio oth Helguera, Aliuska Morales oth Enthalten in Elsevier Science Artiaga, G. ELSEVIER Migration and characterisation of nanosilver from food containers by AF4-ICP-MS 2015 Amsterdam [u.a.] (DE-627)ELV012980455 volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 https://doi.org/10.1016/j.chemolab.2017.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 35.00 Chemie: Allgemeines VZ AR 166 2017 15 0715 1-6 6 045F 540 |
language |
English |
source |
Enthalten in Migration and characterisation of nanosilver from food containers by AF4-ICP-MS Amsterdam [u.a.] volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 |
sourceStr |
Enthalten in Migration and characterisation of nanosilver from food containers by AF4-ICP-MS Amsterdam [u.a.] volume:166 year:2017 day:15 month:07 pages:1-6 extent:6 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Validation Minimal Test Set Dissimilarity Fuzzy clustering Extreme Learning Machine QSAR Data partition Regression k-means clustering |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |
authorswithroles_txt_mv |
Pérez-Garrido, Alfonso @@aut@@ Girón-Rodríguez, Francisco @@oth@@ Bueno-Crespo, Andrés @@oth@@ Soto, Jesús @@oth@@ Pérez-Sánchez, Horacio @@oth@@ Helguera, Aliuska Morales @@oth@@ |
publishDateDaySort_date |
2017-01-15T00:00:00Z |
hierarchy_top_id |
ELV012980455 |
dewey-sort |
3540 |
id |
ELV040340961 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040340961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemolab.2017.04.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000076A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040340961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7439(17)30193-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pérez-Garrido, Alfonso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy clustering as rational partition method for QSAR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Validation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal Test Set Dissimilarity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Extreme Learning Machine</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">QSAR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data partition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">k-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girón-Rodríguez, Francisco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueno-Crespo, Andrés</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soto, Jesús</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez-Sánchez, Horacio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helguera, Aliuska Morales</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Artiaga, G. ELSEVIER</subfield><subfield code="t">Migration and characterisation of nanosilver from food containers by AF4-ICP-MS</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012980455</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1-6</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemolab.2017.04.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield><subfield code="j">2017</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">1-6</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Pérez-Garrido, Alfonso |
spellingShingle |
Pérez-Garrido, Alfonso ddc 540 bkl 35.00 Elsevier Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Fuzzy clustering as rational partition method for QSAR |
authorStr |
Pérez-Garrido, Alfonso |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012980455 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 540 DE-600 540 VZ 35.00 bkl Fuzzy clustering as rational partition method for QSAR Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering Elsevier |
topic |
ddc 540 bkl 35.00 Elsevier Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering |
topic_unstemmed |
ddc 540 bkl 35.00 Elsevier Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering |
topic_browse |
ddc 540 bkl 35.00 Elsevier Validation Elsevier Minimal Test Set Dissimilarity Elsevier Fuzzy clustering Elsevier Extreme Learning Machine Elsevier QSAR Elsevier Data partition Elsevier Regression Elsevier k-means clustering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f g r fgr a b c abc j s js h p s hps a m h am amh |
hierarchy_parent_title |
Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |
hierarchy_parent_id |
ELV012980455 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012980455 |
title |
Fuzzy clustering as rational partition method for QSAR |
ctrlnum |
(DE-627)ELV040340961 (ELSEVIER)S0169-7439(17)30193-4 |
title_full |
Fuzzy clustering as rational partition method for QSAR |
author_sort |
Pérez-Garrido, Alfonso |
journal |
Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |
journalStr |
Migration and characterisation of nanosilver from food containers by AF4-ICP-MS |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Pérez-Garrido, Alfonso |
container_volume |
166 |
physical |
6 |
class |
540 540 DE-600 540 VZ 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pérez-Garrido, Alfonso |
doi_str_mv |
10.1016/j.chemolab.2017.04.006 |
dewey-full |
540 |
title_sort |
fuzzy clustering as rational partition method for qsar |
title_auth |
Fuzzy clustering as rational partition method for QSAR |
abstract |
Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. |
abstractGer |
Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. |
abstract_unstemmed |
Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_62 |
title_short |
Fuzzy clustering as rational partition method for QSAR |
url |
https://doi.org/10.1016/j.chemolab.2017.04.006 |
remote_bool |
true |
author2 |
Girón-Rodríguez, Francisco Bueno-Crespo, Andrés Soto, Jesús Pérez-Sánchez, Horacio Helguera, Aliuska Morales |
author2Str |
Girón-Rodríguez, Francisco Bueno-Crespo, Andrés Soto, Jesús Pérez-Sánchez, Horacio Helguera, Aliuska Morales |
ppnlink |
ELV012980455 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.chemolab.2017.04.006 |
up_date |
2024-07-06T17:15:22.631Z |
_version_ |
1803850741326020608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040340961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemolab.2017.04.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000076A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040340961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7439(17)30193-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pérez-Garrido, Alfonso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy clustering as rational partition method for QSAR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various methods are used to make the partition of data sets for QSAR development and model validation. In this work we used a fuzzy minimals partitioning and we compare this methodology with another rational partition methods like k-means clustering (KMS) and Minimal Test Set Dissimilarity (MTSD). For the development of QSAR models Ordinary Least Squares (OLS) and Extreme Learning Machine (ELM) methods were used. The generated QSAR equations were validated by the coefficient of determination of the internal leave one out (LOO) cross validation method Q LOO 2 and then the coefficient of the external test set Q ext 2 was compared between partition methods. The results of this comparison showed that using fuzzy minimal for big and structurally diverse data sets gave an applicability domain similar to KMS and a better predictability models than both methods, KMS and MTSD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Validation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal Test Set Dissimilarity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Extreme Learning Machine</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">QSAR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data partition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">k-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girón-Rodríguez, Francisco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueno-Crespo, Andrés</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soto, Jesús</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez-Sánchez, Horacio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helguera, Aliuska Morales</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Artiaga, G. ELSEVIER</subfield><subfield code="t">Migration and characterisation of nanosilver from food containers by AF4-ICP-MS</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012980455</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1-6</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemolab.2017.04.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield><subfield code="j">2017</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">1-6</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.4008713 |