Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples

Extreme learning machine (ELM) has been attracted increasing attentions for its fast learning speed and excellent generalization performance. However, the prediction result of a single ELM regression model is usually unstable due to the randomly generating of the input weights and hidden layer bias....
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhang, Caixia [verfasserIn]

Bian, Xihui

Liu, Peng

Tan, Xiaoyao

Fan, Qingjie

Liu, Wei

Lin, Ligang

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2017transfer abstract

Schlagwörter:

Extreme learning machine

Complex samples

Multivariate calibration

Spectral analysis

Ensemble modeling

Umfang:

6

Übergeordnetes Werk:

Enthalten in: Migration and characterisation of nanosilver from food containers by AF4-ICP-MS - Artiaga, G. ELSEVIER, 2015, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:161 ; year:2017 ; day:15 ; month:02 ; pages:43-48 ; extent:6

Links:

Volltext

DOI / URN:

10.1016/j.chemolab.2016.10.019

Katalog-ID:

ELV040342387

Nicht das Richtige dabei?

Schreiben Sie uns!