In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection
Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them,...
Ausführliche Beschreibung
Autor*in: |
Yadav, Nisha [verfasserIn] Mudgal, Deeksha [verfasserIn] Mishra, Vivek [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Analytica chimica acta - Amsterdam : Elsevier Science, 1947, 1272 |
---|---|
Übergeordnetes Werk: |
volume:1272 |
DOI / URN: |
10.1016/j.aca.2023.341502 |
---|
Katalog-ID: |
ELV040377857 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040377857 | ||
003 | DE-627 | ||
005 | 20230926161937.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230624s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aca.2023.341502 |2 doi | |
035 | |a (DE-627)ELV040377857 | ||
035 | |a (ELSEVIER)S0003-2670(23)00723-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.23 |2 bkl | ||
100 | 1 | |a Yadav, Nisha |e verfasserin |4 aut | |
245 | 1 | 0 | |a In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. | ||
650 | 4 | |a Carbon quantum dots | |
650 | 4 | |a Phase transfer | |
650 | 4 | |a Hemoglobin | |
650 | 4 | |a Fluorescence probe | |
650 | 4 | |a Inner filter effect | |
650 | 4 | |a Reactive oxygen species | |
700 | 1 | |a Mudgal, Deeksha |e verfasserin |4 aut | |
700 | 1 | |a Mishra, Vivek |e verfasserin |0 (orcid)0000-0003-2792-3326 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Analytica chimica acta |d Amsterdam : Elsevier Science, 1947 |g 1272 |h Online-Ressource |w (DE-627)300896468 |w (DE-600)1483436-4 |w (DE-576)081952619 |x 1873-4324 |7 nnns |
773 | 1 | 8 | |g volume:1272 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.23 |j Analytische Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 1272 |
author_variant |
n y ny d m dm v m vm |
---|---|
matchkey_str |
article:18734324:2023----::niuyteioinciudaecroqatmossloecner |
hierarchy_sort_str |
2023 |
bklnumber |
35.23 |
publishDate |
2023 |
allfields |
10.1016/j.aca.2023.341502 doi (DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 DE-627 ger DE-627 rda eng 540 VZ 35.23 bkl Yadav, Nisha verfasserin aut In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species Mudgal, Deeksha verfasserin aut Mishra, Vivek verfasserin (orcid)0000-0003-2792-3326 aut Enthalten in Analytica chimica acta Amsterdam : Elsevier Science, 1947 1272 Online-Ressource (DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 1873-4324 nnns volume:1272 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.23 Analytische Chemie: Allgemeines VZ AR 1272 |
spelling |
10.1016/j.aca.2023.341502 doi (DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 DE-627 ger DE-627 rda eng 540 VZ 35.23 bkl Yadav, Nisha verfasserin aut In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species Mudgal, Deeksha verfasserin aut Mishra, Vivek verfasserin (orcid)0000-0003-2792-3326 aut Enthalten in Analytica chimica acta Amsterdam : Elsevier Science, 1947 1272 Online-Ressource (DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 1873-4324 nnns volume:1272 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.23 Analytische Chemie: Allgemeines VZ AR 1272 |
allfields_unstemmed |
10.1016/j.aca.2023.341502 doi (DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 DE-627 ger DE-627 rda eng 540 VZ 35.23 bkl Yadav, Nisha verfasserin aut In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species Mudgal, Deeksha verfasserin aut Mishra, Vivek verfasserin (orcid)0000-0003-2792-3326 aut Enthalten in Analytica chimica acta Amsterdam : Elsevier Science, 1947 1272 Online-Ressource (DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 1873-4324 nnns volume:1272 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.23 Analytische Chemie: Allgemeines VZ AR 1272 |
allfieldsGer |
10.1016/j.aca.2023.341502 doi (DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 DE-627 ger DE-627 rda eng 540 VZ 35.23 bkl Yadav, Nisha verfasserin aut In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species Mudgal, Deeksha verfasserin aut Mishra, Vivek verfasserin (orcid)0000-0003-2792-3326 aut Enthalten in Analytica chimica acta Amsterdam : Elsevier Science, 1947 1272 Online-Ressource (DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 1873-4324 nnns volume:1272 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.23 Analytische Chemie: Allgemeines VZ AR 1272 |
allfieldsSound |
10.1016/j.aca.2023.341502 doi (DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 DE-627 ger DE-627 rda eng 540 VZ 35.23 bkl Yadav, Nisha verfasserin aut In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species Mudgal, Deeksha verfasserin aut Mishra, Vivek verfasserin (orcid)0000-0003-2792-3326 aut Enthalten in Analytica chimica acta Amsterdam : Elsevier Science, 1947 1272 Online-Ressource (DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 1873-4324 nnns volume:1272 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.23 Analytische Chemie: Allgemeines VZ AR 1272 |
language |
English |
source |
Enthalten in Analytica chimica acta 1272 volume:1272 |
sourceStr |
Enthalten in Analytica chimica acta 1272 volume:1272 |
format_phy_str_mv |
Article |
bklname |
Analytische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Analytica chimica acta |
authorswithroles_txt_mv |
Yadav, Nisha @@aut@@ Mudgal, Deeksha @@aut@@ Mishra, Vivek @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
300896468 |
dewey-sort |
3540 |
id |
ELV040377857 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040377857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926161937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230624s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aca.2023.341502</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040377857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0003-2670(23)00723-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yadav, Nisha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemoglobin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence probe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inner filter effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive oxygen species</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mudgal, Deeksha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, Vivek</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2792-3326</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Analytica chimica acta</subfield><subfield code="d">Amsterdam : Elsevier Science, 1947</subfield><subfield code="g">1272</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300896468</subfield><subfield code="w">(DE-600)1483436-4</subfield><subfield code="w">(DE-576)081952619</subfield><subfield code="x">1873-4324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1272</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.23</subfield><subfield code="j">Analytische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1272</subfield></datafield></record></collection>
|
author |
Yadav, Nisha |
spellingShingle |
Yadav, Nisha ddc 540 bkl 35.23 misc Carbon quantum dots misc Phase transfer misc Hemoglobin misc Fluorescence probe misc Inner filter effect misc Reactive oxygen species In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
authorStr |
Yadav, Nisha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300896468 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4324 |
topic_title |
540 VZ 35.23 bkl In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection Carbon quantum dots Phase transfer Hemoglobin Fluorescence probe Inner filter effect Reactive oxygen species |
topic |
ddc 540 bkl 35.23 misc Carbon quantum dots misc Phase transfer misc Hemoglobin misc Fluorescence probe misc Inner filter effect misc Reactive oxygen species |
topic_unstemmed |
ddc 540 bkl 35.23 misc Carbon quantum dots misc Phase transfer misc Hemoglobin misc Fluorescence probe misc Inner filter effect misc Reactive oxygen species |
topic_browse |
ddc 540 bkl 35.23 misc Carbon quantum dots misc Phase transfer misc Hemoglobin misc Fluorescence probe misc Inner filter effect misc Reactive oxygen species |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Analytica chimica acta |
hierarchy_parent_id |
300896468 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Analytica chimica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300896468 (DE-600)1483436-4 (DE-576)081952619 |
title |
In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
ctrlnum |
(DE-627)ELV040377857 (ELSEVIER)S0003-2670(23)00723-7 |
title_full |
In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
author_sort |
Yadav, Nisha |
journal |
Analytica chimica acta |
journalStr |
Analytica chimica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yadav, Nisha Mudgal, Deeksha Mishra, Vivek |
container_volume |
1272 |
class |
540 VZ 35.23 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yadav, Nisha |
doi_str_mv |
10.1016/j.aca.2023.341502 |
normlink |
(ORCID)0000-0003-2792-3326 |
normlink_prefix_str_mv |
(orcid)0000-0003-2792-3326 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
in-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
title_auth |
In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
abstract |
Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. |
abstractGer |
Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. |
abstract_unstemmed |
Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection |
remote_bool |
true |
author2 |
Mudgal, Deeksha Mishra, Vivek |
author2Str |
Mudgal, Deeksha Mishra, Vivek |
ppnlink |
300896468 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aca.2023.341502 |
up_date |
2024-07-06T17:21:29.090Z |
_version_ |
1803851125586132992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040377857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926161937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230624s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aca.2023.341502</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040377857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0003-2670(23)00723-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yadav, Nisha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IMOTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl ( O H . ) and superoxide ( O 2 . − ) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3–90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemoglobin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence probe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inner filter effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive oxygen species</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mudgal, Deeksha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, Vivek</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2792-3326</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Analytica chimica acta</subfield><subfield code="d">Amsterdam : Elsevier Science, 1947</subfield><subfield code="g">1272</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300896468</subfield><subfield code="w">(DE-600)1483436-4</subfield><subfield code="w">(DE-576)081952619</subfield><subfield code="x">1873-4324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1272</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.23</subfield><subfield code="j">Analytische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1272</subfield></datafield></record></collection>
|
score |
7.399107 |