The evolving view of the hematopoietic stem cell niche
Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell popul...
Ausführliche Beschreibung
Autor*in: |
Beerman, Isabel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Interfacing 2D M - Rawat, Ashima ELSEVIER, 2021, official publication of the International Society for Experimental Hematology, Amsterdam [u.a] |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2017 ; pages:22-26 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.exphem.2017.01.008 |
---|
Katalog-ID: |
ELV040380912 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040380912 | ||
003 | DE-627 | ||
005 | 20230625231723.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.exphem.2017.01.008 |2 doi | |
028 | 5 | 2 | |a GBVA2017009000004.pica |
035 | |a (DE-627)ELV040380912 | ||
035 | |a (ELSEVIER)S0301-472X(17)30051-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Beerman, Isabel |e verfasserin |4 aut | |
245 | 1 | 4 | |a The evolving view of the hematopoietic stem cell niche |
264 | 1 | |c 2017transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. | ||
520 | |a Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. | ||
700 | 1 | |a Luis, Tiago C. |4 oth | |
700 | 1 | |a Singbrant, Sofie |4 oth | |
700 | 1 | |a Lo Celso, Cristina |4 oth | |
700 | 1 | |a Méndez-Ferrer, Simon |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rawat, Ashima ELSEVIER |t Interfacing 2D M |d 2021 |d official publication of the International Society for Experimental Hematology |g Amsterdam [u.a] |w (DE-627)ELV006315852 |
773 | 1 | 8 | |g volume:50 |g year:2017 |g pages:22-26 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.exphem.2017.01.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 50 |j 2017 |h 22-26 |g 5 | ||
953 | |2 045F |a 610 |
author_variant |
i b ib |
---|---|
matchkey_str |
beermanisabelluistiagocsingbrantsofieloc:2017----:heovnveoteeaooei |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2017 |
allfields |
10.1016/j.exphem.2017.01.008 doi GBVA2017009000004.pica (DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 DE-627 ger DE-627 rakwb eng 610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Beerman, Isabel verfasserin aut The evolving view of the hematopoietic stem cell niche 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Luis, Tiago C. oth Singbrant, Sofie oth Lo Celso, Cristina oth Méndez-Ferrer, Simon oth Enthalten in Elsevier Science Rawat, Ashima ELSEVIER Interfacing 2D M 2021 official publication of the International Society for Experimental Hematology Amsterdam [u.a] (DE-627)ELV006315852 volume:50 year:2017 pages:22-26 extent:5 https://doi.org/10.1016/j.exphem.2017.01.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 50 2017 22-26 5 045F 610 |
spelling |
10.1016/j.exphem.2017.01.008 doi GBVA2017009000004.pica (DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 DE-627 ger DE-627 rakwb eng 610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Beerman, Isabel verfasserin aut The evolving view of the hematopoietic stem cell niche 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Luis, Tiago C. oth Singbrant, Sofie oth Lo Celso, Cristina oth Méndez-Ferrer, Simon oth Enthalten in Elsevier Science Rawat, Ashima ELSEVIER Interfacing 2D M 2021 official publication of the International Society for Experimental Hematology Amsterdam [u.a] (DE-627)ELV006315852 volume:50 year:2017 pages:22-26 extent:5 https://doi.org/10.1016/j.exphem.2017.01.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 50 2017 22-26 5 045F 610 |
allfields_unstemmed |
10.1016/j.exphem.2017.01.008 doi GBVA2017009000004.pica (DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 DE-627 ger DE-627 rakwb eng 610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Beerman, Isabel verfasserin aut The evolving view of the hematopoietic stem cell niche 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Luis, Tiago C. oth Singbrant, Sofie oth Lo Celso, Cristina oth Méndez-Ferrer, Simon oth Enthalten in Elsevier Science Rawat, Ashima ELSEVIER Interfacing 2D M 2021 official publication of the International Society for Experimental Hematology Amsterdam [u.a] (DE-627)ELV006315852 volume:50 year:2017 pages:22-26 extent:5 https://doi.org/10.1016/j.exphem.2017.01.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 50 2017 22-26 5 045F 610 |
allfieldsGer |
10.1016/j.exphem.2017.01.008 doi GBVA2017009000004.pica (DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 DE-627 ger DE-627 rakwb eng 610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Beerman, Isabel verfasserin aut The evolving view of the hematopoietic stem cell niche 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Luis, Tiago C. oth Singbrant, Sofie oth Lo Celso, Cristina oth Méndez-Ferrer, Simon oth Enthalten in Elsevier Science Rawat, Ashima ELSEVIER Interfacing 2D M 2021 official publication of the International Society for Experimental Hematology Amsterdam [u.a] (DE-627)ELV006315852 volume:50 year:2017 pages:22-26 extent:5 https://doi.org/10.1016/j.exphem.2017.01.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 50 2017 22-26 5 045F 610 |
allfieldsSound |
10.1016/j.exphem.2017.01.008 doi GBVA2017009000004.pica (DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 DE-627 ger DE-627 rakwb eng 610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Beerman, Isabel verfasserin aut The evolving view of the hematopoietic stem cell niche 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. Luis, Tiago C. oth Singbrant, Sofie oth Lo Celso, Cristina oth Méndez-Ferrer, Simon oth Enthalten in Elsevier Science Rawat, Ashima ELSEVIER Interfacing 2D M 2021 official publication of the International Society for Experimental Hematology Amsterdam [u.a] (DE-627)ELV006315852 volume:50 year:2017 pages:22-26 extent:5 https://doi.org/10.1016/j.exphem.2017.01.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 50 2017 22-26 5 045F 610 |
language |
English |
source |
Enthalten in Interfacing 2D M Amsterdam [u.a] volume:50 year:2017 pages:22-26 extent:5 |
sourceStr |
Enthalten in Interfacing 2D M Amsterdam [u.a] volume:50 year:2017 pages:22-26 extent:5 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Interfacing 2D M |
authorswithroles_txt_mv |
Beerman, Isabel @@aut@@ Luis, Tiago C. @@oth@@ Singbrant, Sofie @@oth@@ Lo Celso, Cristina @@oth@@ Méndez-Ferrer, Simon @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV006315852 |
dewey-sort |
3610 |
id |
ELV040380912 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040380912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231723.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.exphem.2017.01.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017009000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040380912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-472X(17)30051-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beerman, Isabel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The evolving view of the hematopoietic stem cell niche</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luis, Tiago C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singbrant, Sofie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lo Celso, Cristina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Méndez-Ferrer, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rawat, Ashima ELSEVIER</subfield><subfield code="t">Interfacing 2D M</subfield><subfield code="d">2021</subfield><subfield code="d">official publication of the International Society for Experimental Hematology</subfield><subfield code="g">Amsterdam [u.a]</subfield><subfield code="w">(DE-627)ELV006315852</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:22-26</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.exphem.2017.01.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2017</subfield><subfield code="h">22-26</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Beerman, Isabel |
spellingShingle |
Beerman, Isabel ddc 610 ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 The evolving view of the hematopoietic stem cell niche |
authorStr |
Beerman, Isabel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006315852 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl The evolving view of the hematopoietic stem cell niche |
topic |
ddc 610 ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
topic_unstemmed |
ddc 610 ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
topic_browse |
ddc 610 ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t c l tc tcl s s ss c c l cc ccl s m f smf |
hierarchy_parent_title |
Interfacing 2D M |
hierarchy_parent_id |
ELV006315852 |
dewey-tens |
610 - Medicine & health 670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Interfacing 2D M |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006315852 |
title |
The evolving view of the hematopoietic stem cell niche |
ctrlnum |
(DE-627)ELV040380912 (ELSEVIER)S0301-472X(17)30051-6 |
title_full |
The evolving view of the hematopoietic stem cell niche |
author_sort |
Beerman, Isabel |
journal |
Interfacing 2D M |
journalStr |
Interfacing 2D M |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
22 |
author_browse |
Beerman, Isabel |
container_volume |
50 |
physical |
5 |
class |
610 610 DE-600 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Beerman, Isabel |
doi_str_mv |
10.1016/j.exphem.2017.01.008 |
dewey-full |
610 670 530 660 |
title_sort |
evolving view of the hematopoietic stem cell niche |
title_auth |
The evolving view of the hematopoietic stem cell niche |
abstract |
Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. |
abstractGer |
Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. |
abstract_unstemmed |
Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
The evolving view of the hematopoietic stem cell niche |
url |
https://doi.org/10.1016/j.exphem.2017.01.008 |
remote_bool |
true |
author2 |
Luis, Tiago C. Singbrant, Sofie Lo Celso, Cristina Méndez-Ferrer, Simon |
author2Str |
Luis, Tiago C. Singbrant, Sofie Lo Celso, Cristina Méndez-Ferrer, Simon |
ppnlink |
ELV006315852 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.exphem.2017.01.008 |
up_date |
2024-07-06T17:21:55.364Z |
_version_ |
1803851153137467392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040380912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231723.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.exphem.2017.01.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017009000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040380912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-472X(17)30051-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beerman, Isabel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The evolving view of the hematopoietic stem cell niche</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled “The evolving view of the hematopoietic stem cell niche,” which we summarize here.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luis, Tiago C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singbrant, Sofie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lo Celso, Cristina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Méndez-Ferrer, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rawat, Ashima ELSEVIER</subfield><subfield code="t">Interfacing 2D M</subfield><subfield code="d">2021</subfield><subfield code="d">official publication of the International Society for Experimental Hematology</subfield><subfield code="g">Amsterdam [u.a]</subfield><subfield code="w">(DE-627)ELV006315852</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:22-26</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.exphem.2017.01.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2017</subfield><subfield code="h">22-26</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.401143 |