Mean square solution of Bessel differential equation with uncertainties
This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square conver...
Ausführliche Beschreibung
Autor*in: |
Cortés, J.-C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics - Hu, Xing ELSEVIER, 2015transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:309 ; year:2017 ; day:1 ; month:01 ; pages:383-395 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.cam.2016.01.034 |
---|
Katalog-ID: |
ELV040468585 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040468585 | ||
003 | DE-627 | ||
005 | 20230625231917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cam.2016.01.034 |2 doi | |
028 | 5 | 2 | |a GBVA2017012000022.pica |
035 | |a (DE-627)ELV040468585 | ||
035 | |a (ELSEVIER)S0377-0427(16)30013-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 670 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 630 |q VZ |
100 | 1 | |a Cortés, J.-C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mean square solution of Bessel differential equation with uncertainties |
264 | 1 | |c 2017transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. | ||
520 | |a This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. | ||
650 | 7 | |a L p -random calculus |2 Elsevier | |
650 | 7 | |a Random differential equation |2 Elsevier | |
650 | 7 | |a Bessel differential equation |2 Elsevier | |
700 | 1 | |a Jódar, L. |4 oth | |
700 | 1 | |a Villafuerte, L. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland |a Hu, Xing ELSEVIER |t Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |d 2015transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV013217658 |
773 | 1 | 8 | |g volume:309 |g year:2017 |g day:1 |g month:01 |g pages:383-395 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cam.2016.01.034 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 309 |j 2017 |b 1 |c 0101 |h 383-395 |g 13 | ||
953 | |2 045F |a 510 |
author_variant |
j c c jcc |
---|---|
matchkey_str |
cortsjcjdarlvillafuertel:2017----:enqaeouinfeslifrnilqai |
hierarchy_sort_str |
2017transfer abstract |
publishDate |
2017 |
allfields |
10.1016/j.cam.2016.01.034 doi GBVA2017012000022.pica (DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 DE-627 ger DE-627 rakwb eng 510 510 DE-600 670 VZ 540 VZ 630 VZ Cortés, J.-C. verfasserin aut Mean square solution of Bessel differential equation with uncertainties 2017transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier Jódar, L. oth Villafuerte, L. oth Enthalten in North-Holland Hu, Xing ELSEVIER Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics 2015transfer abstract Amsterdam [u.a.] (DE-627)ELV013217658 volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 https://doi.org/10.1016/j.cam.2016.01.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 309 2017 1 0101 383-395 13 045F 510 |
spelling |
10.1016/j.cam.2016.01.034 doi GBVA2017012000022.pica (DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 DE-627 ger DE-627 rakwb eng 510 510 DE-600 670 VZ 540 VZ 630 VZ Cortés, J.-C. verfasserin aut Mean square solution of Bessel differential equation with uncertainties 2017transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier Jódar, L. oth Villafuerte, L. oth Enthalten in North-Holland Hu, Xing ELSEVIER Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics 2015transfer abstract Amsterdam [u.a.] (DE-627)ELV013217658 volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 https://doi.org/10.1016/j.cam.2016.01.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 309 2017 1 0101 383-395 13 045F 510 |
allfields_unstemmed |
10.1016/j.cam.2016.01.034 doi GBVA2017012000022.pica (DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 DE-627 ger DE-627 rakwb eng 510 510 DE-600 670 VZ 540 VZ 630 VZ Cortés, J.-C. verfasserin aut Mean square solution of Bessel differential equation with uncertainties 2017transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier Jódar, L. oth Villafuerte, L. oth Enthalten in North-Holland Hu, Xing ELSEVIER Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics 2015transfer abstract Amsterdam [u.a.] (DE-627)ELV013217658 volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 https://doi.org/10.1016/j.cam.2016.01.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 309 2017 1 0101 383-395 13 045F 510 |
allfieldsGer |
10.1016/j.cam.2016.01.034 doi GBVA2017012000022.pica (DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 DE-627 ger DE-627 rakwb eng 510 510 DE-600 670 VZ 540 VZ 630 VZ Cortés, J.-C. verfasserin aut Mean square solution of Bessel differential equation with uncertainties 2017transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier Jódar, L. oth Villafuerte, L. oth Enthalten in North-Holland Hu, Xing ELSEVIER Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics 2015transfer abstract Amsterdam [u.a.] (DE-627)ELV013217658 volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 https://doi.org/10.1016/j.cam.2016.01.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 309 2017 1 0101 383-395 13 045F 510 |
allfieldsSound |
10.1016/j.cam.2016.01.034 doi GBVA2017012000022.pica (DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 DE-627 ger DE-627 rakwb eng 510 510 DE-600 670 VZ 540 VZ 630 VZ Cortés, J.-C. verfasserin aut Mean square solution of Bessel differential equation with uncertainties 2017transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier Jódar, L. oth Villafuerte, L. oth Enthalten in North-Holland Hu, Xing ELSEVIER Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics 2015transfer abstract Amsterdam [u.a.] (DE-627)ELV013217658 volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 https://doi.org/10.1016/j.cam.2016.01.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 309 2017 1 0101 383-395 13 045F 510 |
language |
English |
source |
Enthalten in Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics Amsterdam [u.a.] volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 |
sourceStr |
Enthalten in Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics Amsterdam [u.a.] volume:309 year:2017 day:1 month:01 pages:383-395 extent:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
L p -random calculus Random differential equation Bessel differential equation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |
authorswithroles_txt_mv |
Cortés, J.-C. @@aut@@ Jódar, L. @@oth@@ Villafuerte, L. @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV013217658 |
dewey-sort |
3510 |
id |
ELV040468585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040468585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cam.2016.01.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017012000022.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040468585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-0427(16)30013-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cortés, J.-C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean square solution of Bessel differential equation with uncertainties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L p -random calculus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random differential equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bessel differential equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jódar, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villafuerte, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland</subfield><subfield code="a">Hu, Xing ELSEVIER</subfield><subfield code="t">Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013217658</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:309</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:383-395</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cam.2016.01.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">309</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">383-395</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Cortés, J.-C. |
spellingShingle |
Cortés, J.-C. ddc 510 ddc 670 ddc 540 ddc 630 Elsevier L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Mean square solution of Bessel differential equation with uncertainties |
authorStr |
Cortés, J.-C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013217658 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 670 - Manufacturing 540 - Chemistry & allied sciences 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 670 VZ 540 VZ 630 VZ Mean square solution of Bessel differential equation with uncertainties L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation Elsevier |
topic |
ddc 510 ddc 670 ddc 540 ddc 630 Elsevier L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation |
topic_unstemmed |
ddc 510 ddc 670 ddc 540 ddc 630 Elsevier L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation |
topic_browse |
ddc 510 ddc 670 ddc 540 ddc 630 Elsevier L p -random calculus Elsevier Random differential equation Elsevier Bessel differential equation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l j lj l v lv |
hierarchy_parent_title |
Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |
hierarchy_parent_id |
ELV013217658 |
dewey-tens |
510 - Mathematics 670 - Manufacturing 540 - Chemistry 630 - Agriculture |
hierarchy_top_title |
Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013217658 |
title |
Mean square solution of Bessel differential equation with uncertainties |
ctrlnum |
(DE-627)ELV040468585 (ELSEVIER)S0377-0427(16)30013-9 |
title_full |
Mean square solution of Bessel differential equation with uncertainties |
author_sort |
Cortés, J.-C. |
journal |
Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |
journalStr |
Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
383 |
author_browse |
Cortés, J.-C. |
container_volume |
309 |
physical |
13 |
class |
510 510 DE-600 670 VZ 540 VZ 630 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Cortés, J.-C. |
doi_str_mv |
10.1016/j.cam.2016.01.034 |
dewey-full |
510 670 540 630 |
title_sort |
mean square solution of bessel differential equation with uncertainties |
title_auth |
Mean square solution of Bessel differential equation with uncertainties |
abstract |
This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. |
abstractGer |
This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. |
abstract_unstemmed |
This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Mean square solution of Bessel differential equation with uncertainties |
url |
https://doi.org/10.1016/j.cam.2016.01.034 |
remote_bool |
true |
author2 |
Jódar, L. Villafuerte, L. |
author2Str |
Jódar, L. Villafuerte, L. |
ppnlink |
ELV013217658 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.cam.2016.01.034 |
up_date |
2024-07-06T17:33:43.012Z |
_version_ |
1803851895159128064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040468585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625231917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cam.2016.01.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017012000022.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040468585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-0427(16)30013-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cortés, J.-C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean square solution of Bessel differential equation with uncertainties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with the study of a Bessel-type differential equation where input parameters (coefficient and initial conditions) are assumed to be random variables. Using the so-called L p -random calculus and assuming moment conditions on the random variables in the equation, a mean square convergent generalized power series solution is constructed. As a result of this convergence, the sequences of the mean and standard deviation obtained from the truncated power series solution are convergent as well. The results obtained in the random framework extend their deterministic counterpart. The theory is illustrated in two examples in which several distributions on the random inputs are assumed. Finally, we show through examples that the proposed method is computationally faster than Monte Carlo method.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L p -random calculus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random differential equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bessel differential equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jódar, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villafuerte, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland</subfield><subfield code="a">Hu, Xing ELSEVIER</subfield><subfield code="t">Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013217658</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:309</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:383-395</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cam.2016.01.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">309</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">383-395</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.401434 |