Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR in...
Ausführliche Beschreibung
Autor*in: |
Birenbaum, Ariel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation - Liu, Xiang ELSEVIER, 2015, the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2017 ; pages:111-118 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.engappai.2017.06.006 |
---|
Katalog-ID: |
ELV040503100 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040503100 | ||
003 | DE-627 | ||
005 | 20230625232015.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2017.06.006 |2 doi | |
028 | 5 | 2 | |a GBVA2017015000005.pica |
035 | |a (DE-627)ELV040503100 | ||
035 | |a (ELSEVIER)S0952-1976(17)30125-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Birenbaum, Ariel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
264 | 1 | |c 2017transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. | ||
520 | |a In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. | ||
650 | 7 | |a Multiple Sclerosis |2 Elsevier | |
650 | 7 | |a CNN |2 Elsevier | |
650 | 7 | |a Longitudinal |2 Elsevier | |
650 | 7 | |a Segmentation |2 Elsevier | |
700 | 1 | |a Greenspan, Hayit |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Liu, Xiang ELSEVIER |t Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |d 2015 |d the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control |g Amsterdam [u.a.] |w (DE-627)ELV013402978 |
773 | 1 | 8 | |g volume:65 |g year:2017 |g pages:111-118 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.engappai.2017.06.006 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 65 |j 2017 |h 111-118 |g 8 | ||
953 | |2 045F |a 004 |
author_variant |
a b ab |
---|---|
matchkey_str |
birenbaumarielgreenspanhayit:2017----:utvelniuiacnomlilslrss |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.00 |
publishDate |
2017 |
allfields |
10.1016/j.engappai.2017.06.006 doi GBVA2017015000005.pica (DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Birenbaum, Ariel verfasserin aut Multi-view longitudinal CNN for multiple sclerosis lesion segmentation 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier Greenspan, Hayit oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:65 year:2017 pages:111-118 extent:8 https://doi.org/10.1016/j.engappai.2017.06.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 65 2017 111-118 8 045F 004 |
spelling |
10.1016/j.engappai.2017.06.006 doi GBVA2017015000005.pica (DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Birenbaum, Ariel verfasserin aut Multi-view longitudinal CNN for multiple sclerosis lesion segmentation 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier Greenspan, Hayit oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:65 year:2017 pages:111-118 extent:8 https://doi.org/10.1016/j.engappai.2017.06.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 65 2017 111-118 8 045F 004 |
allfields_unstemmed |
10.1016/j.engappai.2017.06.006 doi GBVA2017015000005.pica (DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Birenbaum, Ariel verfasserin aut Multi-view longitudinal CNN for multiple sclerosis lesion segmentation 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier Greenspan, Hayit oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:65 year:2017 pages:111-118 extent:8 https://doi.org/10.1016/j.engappai.2017.06.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 65 2017 111-118 8 045F 004 |
allfieldsGer |
10.1016/j.engappai.2017.06.006 doi GBVA2017015000005.pica (DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Birenbaum, Ariel verfasserin aut Multi-view longitudinal CNN for multiple sclerosis lesion segmentation 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier Greenspan, Hayit oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:65 year:2017 pages:111-118 extent:8 https://doi.org/10.1016/j.engappai.2017.06.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 65 2017 111-118 8 045F 004 |
allfieldsSound |
10.1016/j.engappai.2017.06.006 doi GBVA2017015000005.pica (DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 VZ 610 VZ 44.00 bkl Birenbaum, Ariel verfasserin aut Multi-view longitudinal CNN for multiple sclerosis lesion segmentation 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier Greenspan, Hayit oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:65 year:2017 pages:111-118 extent:8 https://doi.org/10.1016/j.engappai.2017.06.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 65 2017 111-118 8 045F 004 |
language |
English |
source |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:65 year:2017 pages:111-118 extent:8 |
sourceStr |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:65 year:2017 pages:111-118 extent:8 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Multiple Sclerosis CNN Longitudinal Segmentation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
authorswithroles_txt_mv |
Birenbaum, Ariel @@aut@@ Greenspan, Hayit @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV013402978 |
dewey-sort |
14 |
id |
ELV040503100 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040503100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625232015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2017.06.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017015000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040503100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(17)30125-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Birenbaum, Ariel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-view longitudinal CNN for multiple sclerosis lesion segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple Sclerosis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CNN</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Longitudinal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greenspan, Hayit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:111-118</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2017.06.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="h">111-118</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Birenbaum, Ariel |
spellingShingle |
Birenbaum, Ariel ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
authorStr |
Birenbaum, Ariel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013402978 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 540 VZ 610 VZ 44.00 bkl Multi-view longitudinal CNN for multiple sclerosis lesion segmentation Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation Elsevier |
topic |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation |
topic_unstemmed |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation |
topic_browse |
ddc 004 ddc 540 ddc 610 bkl 44.00 Elsevier Multiple Sclerosis Elsevier CNN Elsevier Longitudinal Elsevier Segmentation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h g hg |
hierarchy_parent_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
hierarchy_parent_id |
ELV013402978 |
dewey-tens |
000 - Computer science, knowledge & systems 540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013402978 |
title |
Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
ctrlnum |
(DE-627)ELV040503100 (ELSEVIER)S0952-1976(17)30125-2 |
title_full |
Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
author_sort |
Birenbaum, Ariel |
journal |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
journalStr |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
111 |
author_browse |
Birenbaum, Ariel |
container_volume |
65 |
physical |
8 |
class |
004 004 DE-600 540 VZ 610 VZ 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Birenbaum, Ariel |
doi_str_mv |
10.1016/j.engappai.2017.06.006 |
dewey-full |
004 540 610 |
title_sort |
multi-view longitudinal cnn for multiple sclerosis lesion segmentation |
title_auth |
Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
abstract |
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. |
abstractGer |
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. |
abstract_unstemmed |
In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Multi-view longitudinal CNN for multiple sclerosis lesion segmentation |
url |
https://doi.org/10.1016/j.engappai.2017.06.006 |
remote_bool |
true |
author2 |
Greenspan, Hayit |
author2Str |
Greenspan, Hayit |
ppnlink |
ELV013402978 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.engappai.2017.06.006 |
up_date |
2024-07-06T17:38:41.193Z |
_version_ |
1803852207824568320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040503100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625232015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2017.06.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017015000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040503100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(17)30125-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Birenbaum, Ariel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-view longitudinal CNN for multiple sclerosis lesion segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, a deep-learning based automated method for Multiple Sclerosis (MS) lesion segmentation is presented. Automatic segmentation of MS lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. In the proposed scheme, MR intensities and White Matter (WM) priors are used to extract candidate lesion voxels, following which Convolutional Neural Networks (CNN) are utilized for false positive reduction and final segmentation result. The proposed network uses longitudinal data, a novel contribution in the domain of MS lesion analysis. The method obtained state-of-the-art results on the 2015 Longitudinal MS Lesion Segmentation Challenge dataset, and achieved a performance level equivalent to a trained human rater. Automatic segmentation methods, such as the one proposed, once proven in accuracy and robustness, can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple Sclerosis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CNN</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Longitudinal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greenspan, Hayit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:111-118</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2017.06.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="h">111-118</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.401573 |