An in-field automatic wheat disease diagnosis system

• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is col...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Lu, Jiang [verfasserIn]

Hu, Jie

Zhao, Guannan

Mei, Fenghua

Zhang, Changshui

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2017

Schlagwörter:

Deep multiple instance learning

Wheat disease detection

Weakly supervised learning

Fully convolutional network

Agricultural disease diagnosis

Umfang:

11

Übergeordnetes Werk:

Enthalten in: Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth - Jia, Linrui ELSEVIER, 2022, COMPAG online : an international journal, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:142 ; year:2017 ; pages:369-379 ; extent:11

Links:

Volltext

DOI / URN:

10.1016/j.compag.2017.09.012

Katalog-ID:

ELV040710149

Nicht das Richtige dabei?

Schreiben Sie uns!