An in-field automatic wheat disease diagnosis system
• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is col...
Ausführliche Beschreibung
Autor*in: |
Lu, Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth - Jia, Linrui ELSEVIER, 2022, COMPAG online : an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:142 ; year:2017 ; pages:369-379 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.compag.2017.09.012 |
---|
Katalog-ID: |
ELV040710149 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040710149 | ||
003 | DE-627 | ||
005 | 20230624075441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180725s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compag.2017.09.012 |2 doi | |
028 | 5 | 2 | |a GBV00000000000255A.pica |
035 | |a (DE-627)ELV040710149 | ||
035 | |a (ELSEVIER)S0168-1699(17)30599-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 |a 630 |a 640 |a 004 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 630 |q DE-600 |
082 | 0 | 4 | |a 640 |q DE-600 |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Lu, Jiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a An in-field automatic wheat disease diagnosis system |
264 | 1 | |c 2017 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. | ||
650 | 7 | |a Deep multiple instance learning |2 Elsevier | |
650 | 7 | |a Wheat disease detection |2 Elsevier | |
650 | 7 | |a Weakly supervised learning |2 Elsevier | |
650 | 7 | |a Fully convolutional network |2 Elsevier | |
650 | 7 | |a Agricultural disease diagnosis |2 Elsevier | |
700 | 1 | |a Hu, Jie |4 oth | |
700 | 1 | |a Zhao, Guannan |4 oth | |
700 | 1 | |a Mei, Fenghua |4 oth | |
700 | 1 | |a Zhang, Changshui |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Jia, Linrui ELSEVIER |t Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |d 2022 |d COMPAG online : an international journal |g Amsterdam [u.a.] |w (DE-627)ELV008658315 |
773 | 1 | 8 | |g volume:142 |g year:2017 |g pages:369-379 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.compag.2017.09.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 142 |j 2017 |h 369-379 |g 11 | ||
953 | |2 045F |a 620 |
author_variant |
j l jl |
---|---|
matchkey_str |
lujianghujiezhaoguannanmeifenghuazhangch:2017----:nnilatmtchadsaei |
hierarchy_sort_str |
2017 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2017 |
allfields |
10.1016/j.compag.2017.09.012 doi GBV00000000000255A.pica (DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 DE-627 ger DE-627 rakwb eng 620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jiang verfasserin aut An in-field automatic wheat disease diagnosis system 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier Hu, Jie oth Zhao, Guannan oth Mei, Fenghua oth Zhang, Changshui oth Enthalten in Elsevier Science Jia, Linrui ELSEVIER Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth 2022 COMPAG online : an international journal Amsterdam [u.a.] (DE-627)ELV008658315 volume:142 year:2017 pages:369-379 extent:11 https://doi.org/10.1016/j.compag.2017.09.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 142 2017 369-379 11 045F 620 |
spelling |
10.1016/j.compag.2017.09.012 doi GBV00000000000255A.pica (DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 DE-627 ger DE-627 rakwb eng 620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jiang verfasserin aut An in-field automatic wheat disease diagnosis system 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier Hu, Jie oth Zhao, Guannan oth Mei, Fenghua oth Zhang, Changshui oth Enthalten in Elsevier Science Jia, Linrui ELSEVIER Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth 2022 COMPAG online : an international journal Amsterdam [u.a.] (DE-627)ELV008658315 volume:142 year:2017 pages:369-379 extent:11 https://doi.org/10.1016/j.compag.2017.09.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 142 2017 369-379 11 045F 620 |
allfields_unstemmed |
10.1016/j.compag.2017.09.012 doi GBV00000000000255A.pica (DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 DE-627 ger DE-627 rakwb eng 620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jiang verfasserin aut An in-field automatic wheat disease diagnosis system 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier Hu, Jie oth Zhao, Guannan oth Mei, Fenghua oth Zhang, Changshui oth Enthalten in Elsevier Science Jia, Linrui ELSEVIER Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth 2022 COMPAG online : an international journal Amsterdam [u.a.] (DE-627)ELV008658315 volume:142 year:2017 pages:369-379 extent:11 https://doi.org/10.1016/j.compag.2017.09.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 142 2017 369-379 11 045F 620 |
allfieldsGer |
10.1016/j.compag.2017.09.012 doi GBV00000000000255A.pica (DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 DE-627 ger DE-627 rakwb eng 620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jiang verfasserin aut An in-field automatic wheat disease diagnosis system 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier Hu, Jie oth Zhao, Guannan oth Mei, Fenghua oth Zhang, Changshui oth Enthalten in Elsevier Science Jia, Linrui ELSEVIER Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth 2022 COMPAG online : an international journal Amsterdam [u.a.] (DE-627)ELV008658315 volume:142 year:2017 pages:369-379 extent:11 https://doi.org/10.1016/j.compag.2017.09.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 142 2017 369-379 11 045F 620 |
allfieldsSound |
10.1016/j.compag.2017.09.012 doi GBV00000000000255A.pica (DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 DE-627 ger DE-627 rakwb eng 620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jiang verfasserin aut An in-field automatic wheat disease diagnosis system 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier Hu, Jie oth Zhao, Guannan oth Mei, Fenghua oth Zhang, Changshui oth Enthalten in Elsevier Science Jia, Linrui ELSEVIER Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth 2022 COMPAG online : an international journal Amsterdam [u.a.] (DE-627)ELV008658315 volume:142 year:2017 pages:369-379 extent:11 https://doi.org/10.1016/j.compag.2017.09.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 142 2017 369-379 11 045F 620 |
language |
English |
source |
Enthalten in Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth Amsterdam [u.a.] volume:142 year:2017 pages:369-379 extent:11 |
sourceStr |
Enthalten in Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth Amsterdam [u.a.] volume:142 year:2017 pages:369-379 extent:11 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Deep multiple instance learning Wheat disease detection Weakly supervised learning Fully convolutional network Agricultural disease diagnosis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |
authorswithroles_txt_mv |
Lu, Jiang @@aut@@ Hu, Jie @@oth@@ Zhao, Guannan @@oth@@ Mei, Fenghua @@oth@@ Zhang, Changshui @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV008658315 |
dewey-sort |
3620 |
id |
ELV040710149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040710149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624075441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2017.09.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000255A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040710149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(17)30599-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An in-field automatic wheat disease diagnosis system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep multiple instance learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wheat disease detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakly supervised learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fully convolutional network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agricultural disease diagnosis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guannan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Fenghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Changshui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Jia, Linrui ELSEVIER</subfield><subfield code="t">Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth</subfield><subfield code="d">2022</subfield><subfield code="d">COMPAG online : an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008658315</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:369-379</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compag.2017.09.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2017</subfield><subfield code="h">369-379</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Lu, Jiang |
spellingShingle |
Lu, Jiang ddc 620 ddc 630 ddc 640 ddc 004 ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis An in-field automatic wheat disease diagnosis system |
authorStr |
Lu, Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008658315 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 630 - Agriculture & related technologies 640 - Home & family management 004 - Data processing & computer science 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl An in-field automatic wheat disease diagnosis system Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis Elsevier |
topic |
ddc 620 ddc 630 ddc 640 ddc 004 ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis |
topic_unstemmed |
ddc 620 ddc 630 ddc 640 ddc 004 ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis |
topic_browse |
ddc 620 ddc 630 ddc 640 ddc 004 ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Deep multiple instance learning Elsevier Wheat disease detection Elsevier Weakly supervised learning Elsevier Fully convolutional network Elsevier Agricultural disease diagnosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j h jh g z gz f m fm c z cz |
hierarchy_parent_title |
Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |
hierarchy_parent_id |
ELV008658315 |
dewey-tens |
620 - Engineering 630 - Agriculture 640 - Home & family management 000 - Computer science, knowledge & systems 690 - Building & construction |
hierarchy_top_title |
Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008658315 |
title |
An in-field automatic wheat disease diagnosis system |
ctrlnum |
(DE-627)ELV040710149 (ELSEVIER)S0168-1699(17)30599-9 |
title_full |
An in-field automatic wheat disease diagnosis system |
author_sort |
Lu, Jiang |
journal |
Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |
journalStr |
Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
369 |
author_browse |
Lu, Jiang |
container_volume |
142 |
physical |
11 |
class |
620 630 640 004 620 DE-600 630 DE-600 640 DE-600 004 DE-600 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lu, Jiang |
doi_str_mv |
10.1016/j.compag.2017.09.012 |
dewey-full |
620 630 640 004 690 |
title_sort |
an in-field automatic wheat disease diagnosis system |
title_auth |
An in-field automatic wheat disease diagnosis system |
abstract |
• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. |
abstractGer |
• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. |
abstract_unstemmed |
• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
An in-field automatic wheat disease diagnosis system |
url |
https://doi.org/10.1016/j.compag.2017.09.012 |
remote_bool |
true |
author2 |
Hu, Jie Zhao, Guannan Mei, Fenghua Zhang, Changshui |
author2Str |
Hu, Jie Zhao, Guannan Mei, Fenghua Zhang, Changshui |
ppnlink |
ELV008658315 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.compag.2017.09.012 |
up_date |
2024-07-06T18:11:19.977Z |
_version_ |
1803854261758459904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040710149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624075441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2017.09.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000255A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040710149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(17)30599-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An in-field automatic wheat disease diagnosis system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• An in-field automatic wheat disease diagnosis system (DMIL-WDDS) is firstly proposed. • DMIL-WDDS achieves identification and localization for wheat diseases. • DMIL-WDDS outperforms conventional CNN-based architectures on recognition accuracy. • A new in-field wheat disease dataset WDD2017 is collected. • DMIL-WDDS has been designed into a real-time mobile application.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep multiple instance learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wheat disease detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weakly supervised learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fully convolutional network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agricultural disease diagnosis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guannan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Fenghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Changshui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Jia, Linrui ELSEVIER</subfield><subfield code="t">Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with borehole depth</subfield><subfield code="d">2022</subfield><subfield code="d">COMPAG online : an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008658315</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:369-379</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compag.2017.09.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2017</subfield><subfield code="h">369-379</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.4028063 |