Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser
• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat tra...
Ausführliche Beschreibung
Autor*in: |
Heredia, M.I. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics - Radünz, William Corrêa ELSEVIER, 2020, design, processes, equipment, economics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:128 ; year:2018 ; day:5 ; month:01 ; pages:737-746 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.applthermaleng.2017.09.017 |
---|
Katalog-ID: |
ELV040767345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040767345 | ||
003 | DE-627 | ||
005 | 20230624075854.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180725s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2017.09.017 |2 doi | |
028 | 5 | 2 | |a GBV00000000000639.pica |
035 | |a (DE-627)ELV040767345 | ||
035 | |a (ELSEVIER)S1359-4311(17)31937-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Heredia, M.I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
264 | 1 | |c 2018 | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. | ||
650 | 7 | |a Absorption heat transformer |2 Elsevier | |
650 | 7 | |a Heat pump |2 Elsevier | |
650 | 7 | |a Heat pipe |2 Elsevier | |
650 | 7 | |a Coefficient of performance |2 Elsevier | |
650 | 7 | |a Heat exchanger |2 Elsevier | |
650 | 7 | |a Energy saving |2 Elsevier | |
700 | 1 | |a Siqueiros, J. |4 oth | |
700 | 1 | |a Hernández, J.A. |4 oth | |
700 | 1 | |a Juárez-Romero, D. |4 oth | |
700 | 1 | |a Huicochea, A. |4 oth | |
700 | 1 | |a González-Rodríguez, J.G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Radünz, William Corrêa ELSEVIER |t Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |d 2020 |d design, processes, equipment, economics |g Amsterdam [u.a.] |w (DE-627)ELV003905551 |
773 | 1 | 8 | |g volume:128 |g year:2018 |g day:5 |g month:01 |g pages:737-746 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.applthermaleng.2017.09.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 128 |j 2018 |b 5 |c 0105 |h 737-746 |g 10 |
author_variant |
m h mh |
---|---|
matchkey_str |
herediamisiqueirosjhernndezjajurezromero:2018----:nryaignonbopinetrnfrebuigetiebten |
hierarchy_sort_str |
2018 |
bklnumber |
52.56 |
publishDate |
2018 |
allfields |
10.1016/j.applthermaleng.2017.09.017 doi GBV00000000000639.pica (DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Heredia, M.I. verfasserin aut Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser 2018 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier Siqueiros, J. oth Hernández, J.A. oth Juárez-Romero, D. oth Huicochea, A. oth González-Rodríguez, J.G. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 https://doi.org/10.1016/j.applthermaleng.2017.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 128 2018 5 0105 737-746 10 |
spelling |
10.1016/j.applthermaleng.2017.09.017 doi GBV00000000000639.pica (DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Heredia, M.I. verfasserin aut Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser 2018 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier Siqueiros, J. oth Hernández, J.A. oth Juárez-Romero, D. oth Huicochea, A. oth González-Rodríguez, J.G. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 https://doi.org/10.1016/j.applthermaleng.2017.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 128 2018 5 0105 737-746 10 |
allfields_unstemmed |
10.1016/j.applthermaleng.2017.09.017 doi GBV00000000000639.pica (DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Heredia, M.I. verfasserin aut Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser 2018 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier Siqueiros, J. oth Hernández, J.A. oth Juárez-Romero, D. oth Huicochea, A. oth González-Rodríguez, J.G. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 https://doi.org/10.1016/j.applthermaleng.2017.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 128 2018 5 0105 737-746 10 |
allfieldsGer |
10.1016/j.applthermaleng.2017.09.017 doi GBV00000000000639.pica (DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Heredia, M.I. verfasserin aut Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser 2018 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier Siqueiros, J. oth Hernández, J.A. oth Juárez-Romero, D. oth Huicochea, A. oth González-Rodríguez, J.G. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 https://doi.org/10.1016/j.applthermaleng.2017.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 128 2018 5 0105 737-746 10 |
allfieldsSound |
10.1016/j.applthermaleng.2017.09.017 doi GBV00000000000639.pica (DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Heredia, M.I. verfasserin aut Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser 2018 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier Siqueiros, J. oth Hernández, J.A. oth Juárez-Romero, D. oth Huicochea, A. oth González-Rodríguez, J.G. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 https://doi.org/10.1016/j.applthermaleng.2017.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 128 2018 5 0105 737-746 10 |
language |
English |
source |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 |
sourceStr |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:128 year:2018 day:5 month:01 pages:737-746 extent:10 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Absorption heat transformer Heat pump Heat pipe Coefficient of performance Heat exchanger Energy saving |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
authorswithroles_txt_mv |
Heredia, M.I. @@aut@@ Siqueiros, J. @@oth@@ Hernández, J.A. @@oth@@ Juárez-Romero, D. @@oth@@ Huicochea, A. @@oth@@ González-Rodríguez, J.G. @@oth@@ |
publishDateDaySort_date |
2018-01-05T00:00:00Z |
hierarchy_top_id |
ELV003905551 |
dewey-sort |
3530 |
id |
ELV040767345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040767345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624075854.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2017.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000639.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040767345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(17)31937-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heredia, M.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption heat transformer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat pipe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coefficient of performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy saving</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siqueiros, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández, J.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juárez-Romero, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huicochea, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González-Rodríguez, J.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:5</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:737-746</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2017.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2018</subfield><subfield code="b">5</subfield><subfield code="c">0105</subfield><subfield code="h">737-746</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Heredia, M.I. |
spellingShingle |
Heredia, M.I. ddc 530 bkl 52.56 Elsevier Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
authorStr |
Heredia, M.I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003905551 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 52.56 bkl Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving Elsevier |
topic |
ddc 530 bkl 52.56 Elsevier Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving |
topic_unstemmed |
ddc 530 bkl 52.56 Elsevier Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving |
topic_browse |
ddc 530 bkl 52.56 Elsevier Absorption heat transformer Elsevier Heat pump Elsevier Heat pipe Elsevier Coefficient of performance Elsevier Heat exchanger Elsevier Energy saving |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j s js j h jh d j r djr a h ah j g r jgr |
hierarchy_parent_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
hierarchy_parent_id |
ELV003905551 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003905551 |
title |
Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
ctrlnum |
(DE-627)ELV040767345 (ELSEVIER)S1359-4311(17)31937-3 |
title_full |
Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
author_sort |
Heredia, M.I. |
journal |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
journalStr |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
737 |
author_browse |
Heredia, M.I. |
container_volume |
128 |
physical |
10 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Heredia, M.I. |
doi_str_mv |
10.1016/j.applthermaleng.2017.09.017 |
dewey-full |
530 620 |
title_sort |
energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
title_auth |
Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
abstract |
• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. |
abstractGer |
• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. |
abstract_unstemmed |
• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser |
url |
https://doi.org/10.1016/j.applthermaleng.2017.09.017 |
remote_bool |
true |
author2 |
Siqueiros, J. Hernández, J.A. Juárez-Romero, D. Huicochea, A. González-Rodríguez, J.G. |
author2Str |
Siqueiros, J. Hernández, J.A. Juárez-Romero, D. Huicochea, A. González-Rodríguez, J.G. |
ppnlink |
ELV003905551 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.applthermaleng.2017.09.017 |
up_date |
2024-07-06T18:20:49.509Z |
_version_ |
1803854858954997760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040767345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624075854.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2017.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000639.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040767345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(17)31937-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heredia, M.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy saving into an absorption heat transformer by using heat pipes between evaporator and condenser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• The usage of heat pipes into an absorption heat transformer is analyzed for energy saving. • The initial heat for a conventional AHT is reduced almost 25% by using heat pipes. • The COP enhances up to 20%, if the all condenser heat is recovered by the evaporator inside an AHT. • The local heat transfer coefficients for the evaporator and condenser were of 720W/m2 °C and 250W/m2 °C respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption heat transformer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat pipe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coefficient of performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy saving</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siqueiros, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández, J.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juárez-Romero, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huicochea, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González-Rodríguez, J.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:5</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:737-746</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2017.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2018</subfield><subfield code="b">5</subfield><subfield code="c">0105</subfield><subfield code="h">737-746</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.3995695 |