Probabilistic qualitative mapping for robots
A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distri...
Ausführliche Beschreibung
Autor*in: |
Padgett, Jennifer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation - Clarke, C.G.D. ELSEVIER, 2021, international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:98 ; year:2017 ; pages:292-306 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.robot.2017.09.013 |
---|
Katalog-ID: |
ELV040824187 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV040824187 | ||
003 | DE-627 | ||
005 | 20230624080310.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180725s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.robot.2017.09.013 |2 doi | |
028 | 5 | 2 | |a GBV00000000000018.pica |
035 | |a (DE-627)ELV040824187 | ||
035 | |a (ELSEVIER)S0921-8890(16)30311-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.64 |2 bkl | ||
100 | 1 | |a Padgett, Jennifer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Probabilistic qualitative mapping for robots |
264 | 1 | |c 2017 | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. | ||
650 | 7 | |a Qualitative relational mapping |2 Elsevier | |
650 | 7 | |a Spatial reasoning |2 Elsevier | |
650 | 7 | |a Robotic mapping |2 Elsevier | |
700 | 1 | |a Campbell, Mark |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Clarke, C.G.D. ELSEVIER |t Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |d 2021 |d international journal |g Amsterdam [u.a.] |w (DE-627)ELV00580583X |
773 | 1 | 8 | |g volume:98 |g year:2017 |g pages:292-306 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.robot.2017.09.013 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.64 |j Radiologie |q VZ |
951 | |a AR | ||
952 | |d 98 |j 2017 |h 292-306 |g 15 | ||
953 | |2 045F |a 620 |
author_variant |
j p jp |
---|---|
matchkey_str |
padgettjennifercampbellmark:2017----:rbblsiqaiaieapn |
hierarchy_sort_str |
2017 |
bklnumber |
44.64 |
publishDate |
2017 |
allfields |
10.1016/j.robot.2017.09.013 doi GBV00000000000018.pica (DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.64 bkl Padgett, Jennifer verfasserin aut Probabilistic qualitative mapping for robots 2017 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier Campbell, Mark oth Enthalten in Elsevier Clarke, C.G.D. ELSEVIER Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation 2021 international journal Amsterdam [u.a.] (DE-627)ELV00580583X volume:98 year:2017 pages:292-306 extent:15 https://doi.org/10.1016/j.robot.2017.09.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ AR 98 2017 292-306 15 045F 620 |
spelling |
10.1016/j.robot.2017.09.013 doi GBV00000000000018.pica (DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.64 bkl Padgett, Jennifer verfasserin aut Probabilistic qualitative mapping for robots 2017 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier Campbell, Mark oth Enthalten in Elsevier Clarke, C.G.D. ELSEVIER Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation 2021 international journal Amsterdam [u.a.] (DE-627)ELV00580583X volume:98 year:2017 pages:292-306 extent:15 https://doi.org/10.1016/j.robot.2017.09.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ AR 98 2017 292-306 15 045F 620 |
allfields_unstemmed |
10.1016/j.robot.2017.09.013 doi GBV00000000000018.pica (DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.64 bkl Padgett, Jennifer verfasserin aut Probabilistic qualitative mapping for robots 2017 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier Campbell, Mark oth Enthalten in Elsevier Clarke, C.G.D. ELSEVIER Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation 2021 international journal Amsterdam [u.a.] (DE-627)ELV00580583X volume:98 year:2017 pages:292-306 extent:15 https://doi.org/10.1016/j.robot.2017.09.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ AR 98 2017 292-306 15 045F 620 |
allfieldsGer |
10.1016/j.robot.2017.09.013 doi GBV00000000000018.pica (DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.64 bkl Padgett, Jennifer verfasserin aut Probabilistic qualitative mapping for robots 2017 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier Campbell, Mark oth Enthalten in Elsevier Clarke, C.G.D. ELSEVIER Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation 2021 international journal Amsterdam [u.a.] (DE-627)ELV00580583X volume:98 year:2017 pages:292-306 extent:15 https://doi.org/10.1016/j.robot.2017.09.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ AR 98 2017 292-306 15 045F 620 |
allfieldsSound |
10.1016/j.robot.2017.09.013 doi GBV00000000000018.pica (DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.64 bkl Padgett, Jennifer verfasserin aut Probabilistic qualitative mapping for robots 2017 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier Campbell, Mark oth Enthalten in Elsevier Clarke, C.G.D. ELSEVIER Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation 2021 international journal Amsterdam [u.a.] (DE-627)ELV00580583X volume:98 year:2017 pages:292-306 extent:15 https://doi.org/10.1016/j.robot.2017.09.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ AR 98 2017 292-306 15 045F 620 |
language |
English |
source |
Enthalten in Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation Amsterdam [u.a.] volume:98 year:2017 pages:292-306 extent:15 |
sourceStr |
Enthalten in Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation Amsterdam [u.a.] volume:98 year:2017 pages:292-306 extent:15 |
format_phy_str_mv |
Article |
bklname |
Radiologie |
institution |
findex.gbv.de |
topic_facet |
Qualitative relational mapping Spatial reasoning Robotic mapping |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |
authorswithroles_txt_mv |
Padgett, Jennifer @@aut@@ Campbell, Mark @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV00580583X |
dewey-sort |
3620 |
id |
ELV040824187 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040824187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624080310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.robot.2017.09.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040824187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-8890(16)30311-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Padgett, Jennifer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic qualitative mapping for robots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Qualitative relational mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spatial reasoning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campbell, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Clarke, C.G.D. ELSEVIER</subfield><subfield code="t">Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation</subfield><subfield code="d">2021</subfield><subfield code="d">international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00580583X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:292-306</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.robot.2017.09.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2017</subfield><subfield code="h">292-306</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Padgett, Jennifer |
spellingShingle |
Padgett, Jennifer ddc 620 ddc 610 bkl 44.64 Elsevier Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Probabilistic qualitative mapping for robots |
authorStr |
Padgett, Jennifer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00580583X |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 610 VZ 44.64 bkl Probabilistic qualitative mapping for robots Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping Elsevier |
topic |
ddc 620 ddc 610 bkl 44.64 Elsevier Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping |
topic_unstemmed |
ddc 620 ddc 610 bkl 44.64 Elsevier Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping |
topic_browse |
ddc 620 ddc 610 bkl 44.64 Elsevier Qualitative relational mapping Elsevier Spatial reasoning Elsevier Robotic mapping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m c mc |
hierarchy_parent_title |
Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |
hierarchy_parent_id |
ELV00580583X |
dewey-tens |
620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00580583X |
title |
Probabilistic qualitative mapping for robots |
ctrlnum |
(DE-627)ELV040824187 (ELSEVIER)S0921-8890(16)30311-6 |
title_full |
Probabilistic qualitative mapping for robots |
author_sort |
Padgett, Jennifer |
journal |
Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |
journalStr |
Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
292 |
author_browse |
Padgett, Jennifer |
container_volume |
98 |
physical |
15 |
class |
620 620 DE-600 610 VZ 44.64 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Padgett, Jennifer |
doi_str_mv |
10.1016/j.robot.2017.09.013 |
dewey-full |
620 610 |
title_sort |
probabilistic qualitative mapping for robots |
title_auth |
Probabilistic qualitative mapping for robots |
abstract |
A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. |
abstractGer |
A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. |
abstract_unstemmed |
A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Probabilistic qualitative mapping for robots |
url |
https://doi.org/10.1016/j.robot.2017.09.013 |
remote_bool |
true |
author2 |
Campbell, Mark |
author2Str |
Campbell, Mark |
ppnlink |
ELV00580583X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.robot.2017.09.013 |
up_date |
2024-07-06T18:29:43.892Z |
_version_ |
1803855419296186368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV040824187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624080310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.robot.2017.09.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV040824187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-8890(16)30311-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Padgett, Jennifer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic qualitative mapping for robots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Qualitative relational mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spatial reasoning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campbell, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Clarke, C.G.D. ELSEVIER</subfield><subfield code="t">Comparison of LI-RADS with other non-invasive liver MRI criteria and radiological opinion for diagnosing hepatocellular carcinoma in cirrhotic livers using gadoxetic acid with histopathological explant correlation</subfield><subfield code="d">2021</subfield><subfield code="d">international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00580583X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:292-306</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.robot.2017.09.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2017</subfield><subfield code="h">292-306</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.40226 |