Technologies for analysis of circulating tumour DNA: Progress and promise
Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of canc...
Ausführliche Beschreibung
Autor*in: |
Zou, Zhen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: The effect of increasing Body Mass Index on sperm quality of subfertile men - Kozopas, N. ELSEVIER, 2019, TrAC, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2017 ; pages:36-49 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.trac.2017.08.004 |
---|
Katalog-ID: |
ELV041040775 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV041040775 | ||
003 | DE-627 | ||
005 | 20230625233535.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180725s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.trac.2017.08.004 |2 doi | |
028 | 5 | 2 | |a GBV00000000000374.pica |
035 | |a (DE-627)ELV041040775 | ||
035 | |a (ELSEVIER)S0165-9936(17)30187-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 610 |q VZ |
084 | |a 35.00 |2 bkl | ||
084 | |a 44.46 |2 bkl | ||
100 | 1 | |a Zou, Zhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Technologies for analysis of circulating tumour DNA: Progress and promise |
264 | 1 | |c 2017transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. | ||
520 | |a Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. | ||
650 | 7 | |a Polymerase chain reaction |2 Elsevier | |
650 | 7 | |a Epigenetic changes |2 Elsevier | |
650 | 7 | |a Circulating tumour DNA |2 Elsevier | |
650 | 7 | |a Point mutations |2 Elsevier | |
650 | 7 | |a Sequencing |2 Elsevier | |
700 | 1 | |a Qi, Peng |4 oth | |
700 | 1 | |a Qing, Zhihe |4 oth | |
700 | 1 | |a Zheng, Jing |4 oth | |
700 | 1 | |a Yang, Sheng |4 oth | |
700 | 1 | |a Chen, Weiju |4 oth | |
700 | 1 | |a Yang, Ronghua |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Kozopas, N. ELSEVIER |t The effect of increasing Body Mass Index on sperm quality of subfertile men |d 2019 |d TrAC |g Amsterdam |w (DE-627)ELV002244268 |
773 | 1 | 8 | |g volume:97 |g year:2017 |g pages:36-49 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.trac.2017.08.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |q VZ |
936 | b | k | |a 44.46 |j Klinische Pathologie |q VZ |
951 | |a AR | ||
952 | |d 97 |j 2017 |h 36-49 |g 14 |
author_variant |
z z zz |
---|---|
matchkey_str |
zouzhenqipengqingzhihezhengjingyangsheng:2017----:ehooisoaayiocruaiguorn |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
35.00 44.46 |
publishDate |
2017 |
allfields |
10.1016/j.trac.2017.08.004 doi GBV00000000000374.pica (DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 DE-627 ger DE-627 rakwb eng 540 610 VZ 35.00 bkl 44.46 bkl Zou, Zhen verfasserin aut Technologies for analysis of circulating tumour DNA: Progress and promise 2017transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier Qi, Peng oth Qing, Zhihe oth Zheng, Jing oth Yang, Sheng oth Chen, Weiju oth Yang, Ronghua oth Enthalten in Elsevier Kozopas, N. ELSEVIER The effect of increasing Body Mass Index on sperm quality of subfertile men 2019 TrAC Amsterdam (DE-627)ELV002244268 volume:97 year:2017 pages:36-49 extent:14 https://doi.org/10.1016/j.trac.2017.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ 44.46 Klinische Pathologie VZ AR 97 2017 36-49 14 |
spelling |
10.1016/j.trac.2017.08.004 doi GBV00000000000374.pica (DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 DE-627 ger DE-627 rakwb eng 540 610 VZ 35.00 bkl 44.46 bkl Zou, Zhen verfasserin aut Technologies for analysis of circulating tumour DNA: Progress and promise 2017transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier Qi, Peng oth Qing, Zhihe oth Zheng, Jing oth Yang, Sheng oth Chen, Weiju oth Yang, Ronghua oth Enthalten in Elsevier Kozopas, N. ELSEVIER The effect of increasing Body Mass Index on sperm quality of subfertile men 2019 TrAC Amsterdam (DE-627)ELV002244268 volume:97 year:2017 pages:36-49 extent:14 https://doi.org/10.1016/j.trac.2017.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ 44.46 Klinische Pathologie VZ AR 97 2017 36-49 14 |
allfields_unstemmed |
10.1016/j.trac.2017.08.004 doi GBV00000000000374.pica (DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 DE-627 ger DE-627 rakwb eng 540 610 VZ 35.00 bkl 44.46 bkl Zou, Zhen verfasserin aut Technologies for analysis of circulating tumour DNA: Progress and promise 2017transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier Qi, Peng oth Qing, Zhihe oth Zheng, Jing oth Yang, Sheng oth Chen, Weiju oth Yang, Ronghua oth Enthalten in Elsevier Kozopas, N. ELSEVIER The effect of increasing Body Mass Index on sperm quality of subfertile men 2019 TrAC Amsterdam (DE-627)ELV002244268 volume:97 year:2017 pages:36-49 extent:14 https://doi.org/10.1016/j.trac.2017.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ 44.46 Klinische Pathologie VZ AR 97 2017 36-49 14 |
allfieldsGer |
10.1016/j.trac.2017.08.004 doi GBV00000000000374.pica (DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 DE-627 ger DE-627 rakwb eng 540 610 VZ 35.00 bkl 44.46 bkl Zou, Zhen verfasserin aut Technologies for analysis of circulating tumour DNA: Progress and promise 2017transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier Qi, Peng oth Qing, Zhihe oth Zheng, Jing oth Yang, Sheng oth Chen, Weiju oth Yang, Ronghua oth Enthalten in Elsevier Kozopas, N. ELSEVIER The effect of increasing Body Mass Index on sperm quality of subfertile men 2019 TrAC Amsterdam (DE-627)ELV002244268 volume:97 year:2017 pages:36-49 extent:14 https://doi.org/10.1016/j.trac.2017.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ 44.46 Klinische Pathologie VZ AR 97 2017 36-49 14 |
allfieldsSound |
10.1016/j.trac.2017.08.004 doi GBV00000000000374.pica (DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 DE-627 ger DE-627 rakwb eng 540 610 VZ 35.00 bkl 44.46 bkl Zou, Zhen verfasserin aut Technologies for analysis of circulating tumour DNA: Progress and promise 2017transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier Qi, Peng oth Qing, Zhihe oth Zheng, Jing oth Yang, Sheng oth Chen, Weiju oth Yang, Ronghua oth Enthalten in Elsevier Kozopas, N. ELSEVIER The effect of increasing Body Mass Index on sperm quality of subfertile men 2019 TrAC Amsterdam (DE-627)ELV002244268 volume:97 year:2017 pages:36-49 extent:14 https://doi.org/10.1016/j.trac.2017.08.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ 44.46 Klinische Pathologie VZ AR 97 2017 36-49 14 |
language |
English |
source |
Enthalten in The effect of increasing Body Mass Index on sperm quality of subfertile men Amsterdam volume:97 year:2017 pages:36-49 extent:14 |
sourceStr |
Enthalten in The effect of increasing Body Mass Index on sperm quality of subfertile men Amsterdam volume:97 year:2017 pages:36-49 extent:14 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines Klinische Pathologie |
institution |
findex.gbv.de |
topic_facet |
Polymerase chain reaction Epigenetic changes Circulating tumour DNA Point mutations Sequencing |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
The effect of increasing Body Mass Index on sperm quality of subfertile men |
authorswithroles_txt_mv |
Zou, Zhen @@aut@@ Qi, Peng @@oth@@ Qing, Zhihe @@oth@@ Zheng, Jing @@oth@@ Yang, Sheng @@oth@@ Chen, Weiju @@oth@@ Yang, Ronghua @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV002244268 |
dewey-sort |
3540 |
id |
ELV041040775 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV041040775</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625233535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trac.2017.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000374.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV041040775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-9936(17)30187-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technologies for analysis of circulating tumour DNA: Progress and promise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymerase chain reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Epigenetic changes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circulating tumour DNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Point mutations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qing, Zhihe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiju</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ronghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kozopas, N. ELSEVIER</subfield><subfield code="t">The effect of increasing Body Mass Index on sperm quality of subfertile men</subfield><subfield code="d">2019</subfield><subfield code="d">TrAC</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002244268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:36-49</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trac.2017.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.46</subfield><subfield code="j">Klinische Pathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2017</subfield><subfield code="h">36-49</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
author |
Zou, Zhen |
spellingShingle |
Zou, Zhen ddc 540 bkl 35.00 bkl 44.46 Elsevier Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Technologies for analysis of circulating tumour DNA: Progress and promise |
authorStr |
Zou, Zhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002244268 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 610 VZ 35.00 bkl 44.46 bkl Technologies for analysis of circulating tumour DNA: Progress and promise Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing Elsevier |
topic |
ddc 540 bkl 35.00 bkl 44.46 Elsevier Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing |
topic_unstemmed |
ddc 540 bkl 35.00 bkl 44.46 Elsevier Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing |
topic_browse |
ddc 540 bkl 35.00 bkl 44.46 Elsevier Polymerase chain reaction Elsevier Epigenetic changes Elsevier Circulating tumour DNA Elsevier Point mutations Elsevier Sequencing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p q pq z q zq j z jz s y sy w c wc r y ry |
hierarchy_parent_title |
The effect of increasing Body Mass Index on sperm quality of subfertile men |
hierarchy_parent_id |
ELV002244268 |
dewey-tens |
540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
The effect of increasing Body Mass Index on sperm quality of subfertile men |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002244268 |
title |
Technologies for analysis of circulating tumour DNA: Progress and promise |
ctrlnum |
(DE-627)ELV041040775 (ELSEVIER)S0165-9936(17)30187-5 |
title_full |
Technologies for analysis of circulating tumour DNA: Progress and promise |
author_sort |
Zou, Zhen |
journal |
The effect of increasing Body Mass Index on sperm quality of subfertile men |
journalStr |
The effect of increasing Body Mass Index on sperm quality of subfertile men |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
36 |
author_browse |
Zou, Zhen |
container_volume |
97 |
physical |
14 |
class |
540 610 VZ 35.00 bkl 44.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zou, Zhen |
doi_str_mv |
10.1016/j.trac.2017.08.004 |
dewey-full |
540 610 |
title_sort |
technologies for analysis of circulating tumour dna: progress and promise |
title_auth |
Technologies for analysis of circulating tumour DNA: Progress and promise |
abstract |
Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. |
abstractGer |
Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. |
abstract_unstemmed |
Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Technologies for analysis of circulating tumour DNA: Progress and promise |
url |
https://doi.org/10.1016/j.trac.2017.08.004 |
remote_bool |
true |
author2 |
Qi, Peng Qing, Zhihe Zheng, Jing Yang, Sheng Chen, Weiju Yang, Ronghua |
author2Str |
Qi, Peng Qing, Zhihe Zheng, Jing Yang, Sheng Chen, Weiju Yang, Ronghua |
ppnlink |
ELV002244268 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.trac.2017.08.004 |
up_date |
2024-07-06T19:04:20.363Z |
_version_ |
1803857596632793088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV041040775</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625233535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180725s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trac.2017.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000374.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV041040775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-9936(17)30187-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technologies for analysis of circulating tumour DNA: Progress and promise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circulating tumour DNA (ctDNA) isolated from peripheral blood has recently been shown to be a biomarker to detect gene mutations for the diagnosis, treatment, and prognosis of cancer. Utilizing ctDNA as the liquid biopsy has significant potential to pave the way toward a better understanding of cancer at the molecular level and improve patient outcomes in the future. Over the past decades, a large number of efforts have been devoted to the development of valid methods for analysing ctDNA, which provide researchers and clinicians a variety of tools to detect and monitor tumours. In this review, we displayed an overview of current representative technologies for the detection of ctDNA and discuss recent technical advancements. Then, the challenges and outlooks in this promising field are featured on the basis of its current development.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymerase chain reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Epigenetic changes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circulating tumour DNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Point mutations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qing, Zhihe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiju</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ronghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kozopas, N. ELSEVIER</subfield><subfield code="t">The effect of increasing Body Mass Index on sperm quality of subfertile men</subfield><subfield code="d">2019</subfield><subfield code="d">TrAC</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002244268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:36-49</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trac.2017.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.46</subfield><subfield code="j">Klinische Pathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2017</subfield><subfield code="h">36-49</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.399046 |