On the complexity of clustering with relaxed size constraints in fixed dimension
We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1...
Ausführliche Beschreibung
Autor*in: |
Goldwurm, Massimiliano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries - Schweiss, Rüdiger ELSEVIER, 2015transfer abstract, the journal of the EATCS, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:717 ; year:2018 ; day:22 ; month:03 ; pages:37-46 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.tcs.2017.04.017 |
---|
Katalog-ID: |
ELV042077559 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV042077559 | ||
003 | DE-627 | ||
005 | 20230626000444.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tcs.2017.04.017 |2 doi | |
028 | 5 | 2 | |a GBV00000000000145A.pica |
035 | |a (DE-627)ELV042077559 | ||
035 | |a (ELSEVIER)S0304-3975(17)30461-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Goldwurm, Massimiliano |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the complexity of clustering with relaxed size constraints in fixed dimension |
264 | 1 | |c 2018transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. | ||
520 | |a We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. | ||
650 | 7 | |a Geometric clustering problems |2 Elsevier | |
650 | 7 | |a Constrained k-Means |2 Elsevier | |
650 | 7 | |a Computational complexity |2 Elsevier | |
650 | 7 | |a Cluster size constraints |2 Elsevier | |
700 | 1 | |a Lin, Jianyi |4 oth | |
700 | 1 | |a Saccà, Francesco |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Schweiss, Rüdiger ELSEVIER |t Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |d 2015transfer abstract |d the journal of the EATCS |g Amsterdam [u.a.] |w (DE-627)ELV013125583 |
773 | 1 | 8 | |g volume:717 |g year:2018 |g day:22 |g month:03 |g pages:37-46 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.tcs.2017.04.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 717 |j 2018 |b 22 |c 0322 |h 37-46 |g 10 | ||
953 | |2 045F |a 004 |
author_variant |
m g mg |
---|---|
matchkey_str |
goldwurmmassimilianolinjianyisaccfrances:2018----:nhcmlxtocutrnwtrlxdieosri |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
50.92 |
publishDate |
2018 |
allfields |
10.1016/j.tcs.2017.04.017 doi GBV00000000000145A.pica (DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Goldwurm, Massimiliano verfasserin aut On the complexity of clustering with relaxed size constraints in fixed dimension 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier Lin, Jianyi oth Saccà, Francesco oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 https://doi.org/10.1016/j.tcs.2017.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 717 2018 22 0322 37-46 10 045F 004 |
spelling |
10.1016/j.tcs.2017.04.017 doi GBV00000000000145A.pica (DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Goldwurm, Massimiliano verfasserin aut On the complexity of clustering with relaxed size constraints in fixed dimension 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier Lin, Jianyi oth Saccà, Francesco oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 https://doi.org/10.1016/j.tcs.2017.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 717 2018 22 0322 37-46 10 045F 004 |
allfields_unstemmed |
10.1016/j.tcs.2017.04.017 doi GBV00000000000145A.pica (DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Goldwurm, Massimiliano verfasserin aut On the complexity of clustering with relaxed size constraints in fixed dimension 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier Lin, Jianyi oth Saccà, Francesco oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 https://doi.org/10.1016/j.tcs.2017.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 717 2018 22 0322 37-46 10 045F 004 |
allfieldsGer |
10.1016/j.tcs.2017.04.017 doi GBV00000000000145A.pica (DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Goldwurm, Massimiliano verfasserin aut On the complexity of clustering with relaxed size constraints in fixed dimension 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier Lin, Jianyi oth Saccà, Francesco oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 https://doi.org/10.1016/j.tcs.2017.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 717 2018 22 0322 37-46 10 045F 004 |
allfieldsSound |
10.1016/j.tcs.2017.04.017 doi GBV00000000000145A.pica (DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 620 VZ 690 VZ 50.92 bkl Goldwurm, Massimiliano verfasserin aut On the complexity of clustering with relaxed size constraints in fixed dimension 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier Lin, Jianyi oth Saccà, Francesco oth Enthalten in Elsevier Schweiss, Rüdiger ELSEVIER Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries 2015transfer abstract the journal of the EATCS Amsterdam [u.a.] (DE-627)ELV013125583 volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 https://doi.org/10.1016/j.tcs.2017.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 50.92 Meerestechnik VZ AR 717 2018 22 0322 37-46 10 045F 004 |
language |
English |
source |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 |
sourceStr |
Enthalten in Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries Amsterdam [u.a.] volume:717 year:2018 day:22 month:03 pages:37-46 extent:10 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Geometric clustering problems Constrained k-Means Computational complexity Cluster size constraints |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
authorswithroles_txt_mv |
Goldwurm, Massimiliano @@aut@@ Lin, Jianyi @@oth@@ Saccà, Francesco @@oth@@ |
publishDateDaySort_date |
2018-01-22T00:00:00Z |
hierarchy_top_id |
ELV013125583 |
dewey-sort |
14 |
id |
ELV042077559 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042077559</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626000444.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2017.04.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000145A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042077559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(17)30461-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldwurm, Massimiliano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the complexity of clustering with relaxed size constraints in fixed dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric clustering problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constrained k-Means</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster size constraints</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Jianyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saccà, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:717</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:37-46</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2017.04.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">717</subfield><subfield code="j">2018</subfield><subfield code="b">22</subfield><subfield code="c">0322</subfield><subfield code="h">37-46</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Goldwurm, Massimiliano |
spellingShingle |
Goldwurm, Massimiliano ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints On the complexity of clustering with relaxed size constraints in fixed dimension |
authorStr |
Goldwurm, Massimiliano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013125583 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl On the complexity of clustering with relaxed size constraints in fixed dimension Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints Elsevier |
topic |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints |
topic_unstemmed |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints |
topic_browse |
ddc 004 ddc 620 ddc 690 bkl 50.92 Elsevier Geometric clustering problems Elsevier Constrained k-Means Elsevier Computational complexity Elsevier Cluster size constraints |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j l jl f s fs |
hierarchy_parent_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
hierarchy_parent_id |
ELV013125583 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013125583 |
title |
On the complexity of clustering with relaxed size constraints in fixed dimension |
ctrlnum |
(DE-627)ELV042077559 (ELSEVIER)S0304-3975(17)30461-9 |
title_full |
On the complexity of clustering with relaxed size constraints in fixed dimension |
author_sort |
Goldwurm, Massimiliano |
journal |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
journalStr |
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
37 |
author_browse |
Goldwurm, Massimiliano |
container_volume |
717 |
physical |
10 |
class |
004 004 DE-600 620 VZ 690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Goldwurm, Massimiliano |
doi_str_mv |
10.1016/j.tcs.2017.04.017 |
dewey-full |
004 620 690 |
title_sort |
on the complexity of clustering with relaxed size constraints in fixed dimension |
title_auth |
On the complexity of clustering with relaxed size constraints in fixed dimension |
abstract |
We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. |
abstractGer |
We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. |
abstract_unstemmed |
We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 |
title_short |
On the complexity of clustering with relaxed size constraints in fixed dimension |
url |
https://doi.org/10.1016/j.tcs.2017.04.017 |
remote_bool |
true |
author2 |
Lin, Jianyi Saccà, Francesco |
author2Str |
Lin, Jianyi Saccà, Francesco |
ppnlink |
ELV013125583 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.tcs.2017.04.017 |
up_date |
2024-07-06T21:50:41.140Z |
_version_ |
1803868062237065216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042077559</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626000444.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tcs.2017.04.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000145A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042077559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3975(17)30461-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldwurm, Massimiliano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the complexity of clustering with relaxed size constraints in fixed dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the computational complexity of the problem of computing an optimal clustering { A 1 , A 2 , . . . , A k } of a set of points assuming that every cluster size | A i | belongs to a given set M of positive integers. We present a polynomial time algorithm for solving the problem in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of size constraints, which extends to the ℓ 1 -norm an analogous procedure known for the Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the problem is (strongly) NP-hard with size constraints M = { 2 , 4 } . This result is extended also to the size constraints M = { 2 , 3 } both in the case of Euclidean and ℓ 1 -norm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric clustering problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constrained k-Means</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster size constraints</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Jianyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saccà, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Schweiss, Rüdiger ELSEVIER</subfield><subfield code="t">Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="d">the journal of the EATCS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013125583</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:717</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:37-46</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tcs.2017.04.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">717</subfield><subfield code="j">2018</subfield><subfield code="b">22</subfield><subfield code="c">0322</subfield><subfield code="h">37-46</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.4008503 |