Granulation of drinking water treatment residuals as applicable media for phosphorus removal
Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreci...
Ausführliche Beschreibung
Autor*in: |
Li, Xiuqing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality - Ren, Chunhui ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:213 ; year:2018 ; day:1 ; month:05 ; pages:36-46 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.jenvman.2018.02.056 |
---|
Katalog-ID: |
ELV042249554 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV042249554 | ||
003 | DE-627 | ||
005 | 20230626000918.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jenvman.2018.02.056 |2 doi | |
028 | 5 | 2 | |a GBV00000000000506.pica |
035 | |a (DE-627)ELV042249554 | ||
035 | |a (ELSEVIER)S0301-4797(18)30163-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Li, Xiuqing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
264 | 1 | |c 2018transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. | ||
520 | |a Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. | ||
650 | 7 | |a DWTR |2 Elsevier | |
650 | 7 | |a Granulation |2 Elsevier | |
650 | 7 | |a Adsorption |2 Elsevier | |
650 | 7 | |a Phosphorus |2 Elsevier | |
700 | 1 | |a Cui, Jun |4 oth | |
700 | 1 | |a Pei, Yuansheng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Ren, Chunhui ELSEVIER |t Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV008002754 |
773 | 1 | 8 | |g volume:213 |g year:2018 |g day:1 |g month:05 |g pages:36-46 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jenvman.2018.02.056 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 213 |j 2018 |b 1 |c 0501 |h 36-46 |g 11 |
author_variant |
x l xl |
---|---|
matchkey_str |
lixiuqingcuijunpeiyuansheng:2018----:rnltoodiknwtrramnrsdassplcbeei |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2018 |
allfields |
10.1016/j.jenvman.2018.02.056 doi GBV00000000000506.pica (DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Li, Xiuqing verfasserin aut Granulation of drinking water treatment residuals as applicable media for phosphorus removal 2018transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier Cui, Jun oth Pei, Yuansheng oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 https://doi.org/10.1016/j.jenvman.2018.02.056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 213 2018 1 0501 36-46 11 |
spelling |
10.1016/j.jenvman.2018.02.056 doi GBV00000000000506.pica (DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Li, Xiuqing verfasserin aut Granulation of drinking water treatment residuals as applicable media for phosphorus removal 2018transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier Cui, Jun oth Pei, Yuansheng oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 https://doi.org/10.1016/j.jenvman.2018.02.056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 213 2018 1 0501 36-46 11 |
allfields_unstemmed |
10.1016/j.jenvman.2018.02.056 doi GBV00000000000506.pica (DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Li, Xiuqing verfasserin aut Granulation of drinking water treatment residuals as applicable media for phosphorus removal 2018transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier Cui, Jun oth Pei, Yuansheng oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 https://doi.org/10.1016/j.jenvman.2018.02.056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 213 2018 1 0501 36-46 11 |
allfieldsGer |
10.1016/j.jenvman.2018.02.056 doi GBV00000000000506.pica (DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Li, Xiuqing verfasserin aut Granulation of drinking water treatment residuals as applicable media for phosphorus removal 2018transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier Cui, Jun oth Pei, Yuansheng oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 https://doi.org/10.1016/j.jenvman.2018.02.056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 213 2018 1 0501 36-46 11 |
allfieldsSound |
10.1016/j.jenvman.2018.02.056 doi GBV00000000000506.pica (DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Li, Xiuqing verfasserin aut Granulation of drinking water treatment residuals as applicable media for phosphorus removal 2018transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier Cui, Jun oth Pei, Yuansheng oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 https://doi.org/10.1016/j.jenvman.2018.02.056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 213 2018 1 0501 36-46 11 |
language |
English |
source |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 |
sourceStr |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:213 year:2018 day:1 month:05 pages:36-46 extent:11 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
DWTR Granulation Adsorption Phosphorus |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
authorswithroles_txt_mv |
Li, Xiuqing @@aut@@ Cui, Jun @@oth@@ Pei, Yuansheng @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV008002754 |
dewey-sort |
3300 |
id |
ELV042249554 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042249554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626000918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2018.02.056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000506.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042249554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(18)30163-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Granulation of drinking water treatment residuals as applicable media for phosphorus removal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DWTR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Granulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phosphorus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Yuansheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:36-46</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2018.02.056</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield><subfield code="j">2018</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">36-46</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
author |
Li, Xiuqing |
spellingShingle |
Li, Xiuqing ddc 300 bkl 70.00 bkl 71.00 Elsevier DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
authorStr |
Li, Xiuqing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008002754 |
format |
electronic Article |
dewey-ones |
300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
300 VZ 70.00 bkl 71.00 bkl Granulation of drinking water treatment residuals as applicable media for phosphorus removal DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus Elsevier |
topic |
ddc 300 bkl 70.00 bkl 71.00 Elsevier DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus |
topic_unstemmed |
ddc 300 bkl 70.00 bkl 71.00 Elsevier DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus |
topic_browse |
ddc 300 bkl 70.00 bkl 71.00 Elsevier DWTR Elsevier Granulation Elsevier Adsorption Elsevier Phosphorus |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j c jc y p yp |
hierarchy_parent_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
hierarchy_parent_id |
ELV008002754 |
dewey-tens |
300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008002754 |
title |
Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
ctrlnum |
(DE-627)ELV042249554 (ELSEVIER)S0301-4797(18)30163-4 |
title_full |
Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
author_sort |
Li, Xiuqing |
journal |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
journalStr |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
36 |
author_browse |
Li, Xiuqing |
container_volume |
213 |
physical |
11 |
class |
300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Xiuqing |
doi_str_mv |
10.1016/j.jenvman.2018.02.056 |
dewey-full |
300 |
title_sort |
granulation of drinking water treatment residuals as applicable media for phosphorus removal |
title_auth |
Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
abstract |
Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. |
abstractGer |
Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. |
abstract_unstemmed |
Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Granulation of drinking water treatment residuals as applicable media for phosphorus removal |
url |
https://doi.org/10.1016/j.jenvman.2018.02.056 |
remote_bool |
true |
author2 |
Cui, Jun Pei, Yuansheng |
author2Str |
Cui, Jun Pei, Yuansheng |
ppnlink |
ELV008002754 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jenvman.2018.02.056 |
up_date |
2024-07-06T22:18:01.022Z |
_version_ |
1803869781777973248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042249554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626000918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2018.02.056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000506.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042249554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(18)30163-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Granulation of drinking water treatment residuals as applicable media for phosphorus removal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m2/g and total pore volume of 0.049 cm3/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DWTR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Granulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phosphorus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Yuansheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:36-46</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2018.02.056</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield><subfield code="j">2018</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">36-46</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.4007463 |