Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential
Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet su...
Ausführliche Beschreibung
Autor*in: |
Ravindran, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Constructing heterogeneous conductive network with core-shell AgFe - Jiang, Tao ELSEVIER, 2022, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2018 ; pages:572-578 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.foodhyd.2017.12.003 |
---|
Katalog-ID: |
ELV042282446 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV042282446 | ||
003 | DE-627 | ||
005 | 20230626001020.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.foodhyd.2017.12.003 |2 doi | |
028 | 5 | 2 | |a GBV00000000000579.pica |
035 | |a (DE-627)ELV042282446 | ||
035 | |a (ELSEVIER)S0268-005X(17)30828-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Ravindran, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
264 | 1 | |c 2018transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. | ||
520 | |a Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. | ||
650 | 7 | |a WPI |2 Elsevier | |
650 | 7 | |a DLVO |2 Elsevier | |
650 | 7 | |a Zeta potential |2 Elsevier | |
650 | 7 | |a Gouy-Chapman model |2 Elsevier | |
650 | 7 | |a Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model |2 Elsevier | |
700 | 1 | |a Williams, M.A.K. |4 oth | |
700 | 1 | |a Ward, R.L. |4 oth | |
700 | 1 | |a Gillies, G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jiang, Tao ELSEVIER |t Constructing heterogeneous conductive network with core-shell AgFe |d 2022 |g Amsterdam |w (DE-627)ELV008810036 |
773 | 1 | 8 | |g volume:79 |g year:2018 |g pages:572-578 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.foodhyd.2017.12.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 79 |j 2018 |h 572-578 |g 7 |
author_variant |
s r sr |
---|---|
matchkey_str |
ravindranswilliamsmakwardrlgilliesg:2018----:nesadnhwhpoeteowepoentblzdmlindpnopincteghnclimocnrtobmpi |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2018 |
allfields |
10.1016/j.foodhyd.2017.12.003 doi GBV00000000000579.pica (DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Ravindran, S. verfasserin aut Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential 2018transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier Williams, M.A.K. oth Ward, R.L. oth Gillies, G. oth Enthalten in Elsevier Jiang, Tao ELSEVIER Constructing heterogeneous conductive network with core-shell AgFe 2022 Amsterdam (DE-627)ELV008810036 volume:79 year:2018 pages:572-578 extent:7 https://doi.org/10.1016/j.foodhyd.2017.12.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 79 2018 572-578 7 |
spelling |
10.1016/j.foodhyd.2017.12.003 doi GBV00000000000579.pica (DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Ravindran, S. verfasserin aut Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential 2018transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier Williams, M.A.K. oth Ward, R.L. oth Gillies, G. oth Enthalten in Elsevier Jiang, Tao ELSEVIER Constructing heterogeneous conductive network with core-shell AgFe 2022 Amsterdam (DE-627)ELV008810036 volume:79 year:2018 pages:572-578 extent:7 https://doi.org/10.1016/j.foodhyd.2017.12.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 79 2018 572-578 7 |
allfields_unstemmed |
10.1016/j.foodhyd.2017.12.003 doi GBV00000000000579.pica (DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Ravindran, S. verfasserin aut Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential 2018transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier Williams, M.A.K. oth Ward, R.L. oth Gillies, G. oth Enthalten in Elsevier Jiang, Tao ELSEVIER Constructing heterogeneous conductive network with core-shell AgFe 2022 Amsterdam (DE-627)ELV008810036 volume:79 year:2018 pages:572-578 extent:7 https://doi.org/10.1016/j.foodhyd.2017.12.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 79 2018 572-578 7 |
allfieldsGer |
10.1016/j.foodhyd.2017.12.003 doi GBV00000000000579.pica (DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Ravindran, S. verfasserin aut Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential 2018transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier Williams, M.A.K. oth Ward, R.L. oth Gillies, G. oth Enthalten in Elsevier Jiang, Tao ELSEVIER Constructing heterogeneous conductive network with core-shell AgFe 2022 Amsterdam (DE-627)ELV008810036 volume:79 year:2018 pages:572-578 extent:7 https://doi.org/10.1016/j.foodhyd.2017.12.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 79 2018 572-578 7 |
allfieldsSound |
10.1016/j.foodhyd.2017.12.003 doi GBV00000000000579.pica (DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Ravindran, S. verfasserin aut Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential 2018transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier Williams, M.A.K. oth Ward, R.L. oth Gillies, G. oth Enthalten in Elsevier Jiang, Tao ELSEVIER Constructing heterogeneous conductive network with core-shell AgFe 2022 Amsterdam (DE-627)ELV008810036 volume:79 year:2018 pages:572-578 extent:7 https://doi.org/10.1016/j.foodhyd.2017.12.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 79 2018 572-578 7 |
language |
English |
source |
Enthalten in Constructing heterogeneous conductive network with core-shell AgFe Amsterdam volume:79 year:2018 pages:572-578 extent:7 |
sourceStr |
Enthalten in Constructing heterogeneous conductive network with core-shell AgFe Amsterdam volume:79 year:2018 pages:572-578 extent:7 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
WPI DLVO Zeta potential Gouy-Chapman model Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Constructing heterogeneous conductive network with core-shell AgFe |
authorswithroles_txt_mv |
Ravindran, S. @@aut@@ Williams, M.A.K. @@oth@@ Ward, R.L. @@oth@@ Gillies, G. @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV008810036 |
dewey-sort |
3670 |
id |
ELV042282446 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042282446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626001020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.foodhyd.2017.12.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000579.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042282446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0268-005X(17)30828-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravindran, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WPI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DLVO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zeta potential</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gouy-Chapman model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, M.A.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ward, R.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillies, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jiang, Tao ELSEVIER</subfield><subfield code="t">Constructing heterogeneous conductive network with core-shell AgFe</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008810036</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:572-578</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.foodhyd.2017.12.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="h">572-578</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
author |
Ravindran, S. |
spellingShingle |
Ravindran, S. ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
authorStr |
Ravindran, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008810036 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model Elsevier |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier WPI Elsevier DLVO Elsevier Zeta potential Elsevier Gouy-Chapman model Elsevier Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m w mw r w rw g g gg |
hierarchy_parent_title |
Constructing heterogeneous conductive network with core-shell AgFe |
hierarchy_parent_id |
ELV008810036 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Constructing heterogeneous conductive network with core-shell AgFe |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008810036 |
title |
Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
ctrlnum |
(DE-627)ELV042282446 (ELSEVIER)S0268-005X(17)30828-7 |
title_full |
Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
author_sort |
Ravindran, S. |
journal |
Constructing heterogeneous conductive network with core-shell AgFe |
journalStr |
Constructing heterogeneous conductive network with core-shell AgFe |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
572 |
author_browse |
Ravindran, S. |
container_volume |
79 |
physical |
7 |
class |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ravindran, S. |
doi_str_mv |
10.1016/j.foodhyd.2017.12.003 |
dewey-full |
670 530 660 |
title_sort |
understanding how the properties of whey protein stabilized emulsions depend on ph, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
title_auth |
Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
abstract |
Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. |
abstractGer |
Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. |
abstract_unstemmed |
Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential |
url |
https://doi.org/10.1016/j.foodhyd.2017.12.003 |
remote_bool |
true |
author2 |
Williams, M.A.K. Ward, R.L. Gillies, G. |
author2Str |
Williams, M.A.K. Ward, R.L. Gillies, G. |
ppnlink |
ELV008810036 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.foodhyd.2017.12.003 |
up_date |
2024-07-06T22:23:19.825Z |
_version_ |
1803870116068196352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042282446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626001020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.foodhyd.2017.12.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000579.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042282446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0268-005X(17)30828-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravindran, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface properties play a key role in determining how colloidal particles interact. In the case of emulsion droplets stabilized with whey protein isolate (WPI) the repulsive interactions are thought to be mostly electrostatic and governed by the environment-modulated zeta potential of the droplet surfaces. By coupling a Gouy-Chapman model of the electrical double layer with the chemical equilibria of both the ionizable moieties on the protein and of the binding of calcium by charged groups, the zeta potential of emulsion droplets as a function of pH, ionic strength and calcium concentration is predicted. Experimental data is shown to fit well to this model. In addition the zeta potential alone is shown to be a good predictor of the macroscopic behavior of the emulsion, as characterized by measurements of the low-stress viscosity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WPI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DLVO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zeta potential</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gouy-Chapman model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-p<ce:italic>K</ce:italic> <ce:inf loc="post"> <ce:italic>a</ce:italic> </ce:inf> model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, M.A.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ward, R.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillies, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jiang, Tao ELSEVIER</subfield><subfield code="t">Constructing heterogeneous conductive network with core-shell AgFe</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008810036</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:572-578</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.foodhyd.2017.12.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="h">572-578</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
score |
7.401513 |