A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem
The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variabl...
Ausführliche Beschreibung
Autor*in: |
Araujo, Rodolfo Pereira [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide - Hemeda, O.M. ELSEVIER, 2015transfer abstract, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2018 ; pages:183-190 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.endm.2018.03.024 |
---|
Katalog-ID: |
ELV042674050 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV042674050 | ||
003 | DE-627 | ||
005 | 20230626002026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.endm.2018.03.024 |2 doi | |
028 | 5 | 2 | |a GBV00000000000198A.pica |
035 | |a (DE-627)ELV042674050 | ||
035 | |a (ELSEVIER)S1571-0653(18)30070-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Araujo, Rodolfo Pereira |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
264 | 1 | |c 2018transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. | ||
520 | |a The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. | ||
650 | 7 | |a Traveling Thief Problem |2 Elsevier | |
650 | 7 | |a Variable Neighborhood Descent |2 Elsevier | |
650 | 7 | |a Graphics Processing Unit |2 Elsevier | |
650 | 7 | |a Local Search |2 Elsevier | |
650 | 7 | |a GRASP |2 Elsevier | |
700 | 1 | |a Rios, Eyder |4 oth | |
700 | 1 | |a Coelho, Igor Machado |4 oth | |
700 | 1 | |a Marzulo, Leandro A.J. |4 oth | |
700 | 1 | |a Clicia Castro, Maria |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Hemeda, O.M. ELSEVIER |t Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |d 2015transfer abstract |g Amsterdam |w (DE-627)ELV012993891 |
773 | 1 | 8 | |g volume:66 |g year:2018 |g pages:183-190 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.endm.2018.03.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 66 |j 2018 |h 183-190 |g 8 | ||
953 | |2 045F |a 510 |
author_variant |
r p a rp rpa |
---|---|
matchkey_str |
araujorodolfopereirarioseydercoelhoigorm:2018----:nvlitosriernoievdprahnpfrht |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
44.90 |
publishDate |
2018 |
allfields |
10.1016/j.endm.2018.03.024 doi GBV00000000000198A.pica (DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ 610 VZ 44.90 bkl Araujo, Rodolfo Pereira verfasserin aut A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier Rios, Eyder oth Coelho, Igor Machado oth Marzulo, Leandro A.J. oth Clicia Castro, Maria oth Enthalten in Elsevier Science Hemeda, O.M. ELSEVIER Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide 2015transfer abstract Amsterdam (DE-627)ELV012993891 volume:66 year:2018 pages:183-190 extent:8 https://doi.org/10.1016/j.endm.2018.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.90 Neurologie VZ AR 66 2018 183-190 8 045F 510 |
spelling |
10.1016/j.endm.2018.03.024 doi GBV00000000000198A.pica (DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ 610 VZ 44.90 bkl Araujo, Rodolfo Pereira verfasserin aut A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier Rios, Eyder oth Coelho, Igor Machado oth Marzulo, Leandro A.J. oth Clicia Castro, Maria oth Enthalten in Elsevier Science Hemeda, O.M. ELSEVIER Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide 2015transfer abstract Amsterdam (DE-627)ELV012993891 volume:66 year:2018 pages:183-190 extent:8 https://doi.org/10.1016/j.endm.2018.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.90 Neurologie VZ AR 66 2018 183-190 8 045F 510 |
allfields_unstemmed |
10.1016/j.endm.2018.03.024 doi GBV00000000000198A.pica (DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ 610 VZ 44.90 bkl Araujo, Rodolfo Pereira verfasserin aut A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier Rios, Eyder oth Coelho, Igor Machado oth Marzulo, Leandro A.J. oth Clicia Castro, Maria oth Enthalten in Elsevier Science Hemeda, O.M. ELSEVIER Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide 2015transfer abstract Amsterdam (DE-627)ELV012993891 volume:66 year:2018 pages:183-190 extent:8 https://doi.org/10.1016/j.endm.2018.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.90 Neurologie VZ AR 66 2018 183-190 8 045F 510 |
allfieldsGer |
10.1016/j.endm.2018.03.024 doi GBV00000000000198A.pica (DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ 610 VZ 44.90 bkl Araujo, Rodolfo Pereira verfasserin aut A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier Rios, Eyder oth Coelho, Igor Machado oth Marzulo, Leandro A.J. oth Clicia Castro, Maria oth Enthalten in Elsevier Science Hemeda, O.M. ELSEVIER Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide 2015transfer abstract Amsterdam (DE-627)ELV012993891 volume:66 year:2018 pages:183-190 extent:8 https://doi.org/10.1016/j.endm.2018.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.90 Neurologie VZ AR 66 2018 183-190 8 045F 510 |
allfieldsSound |
10.1016/j.endm.2018.03.024 doi GBV00000000000198A.pica (DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ 610 VZ 44.90 bkl Araujo, Rodolfo Pereira verfasserin aut A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier Rios, Eyder oth Coelho, Igor Machado oth Marzulo, Leandro A.J. oth Clicia Castro, Maria oth Enthalten in Elsevier Science Hemeda, O.M. ELSEVIER Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide 2015transfer abstract Amsterdam (DE-627)ELV012993891 volume:66 year:2018 pages:183-190 extent:8 https://doi.org/10.1016/j.endm.2018.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.90 Neurologie VZ AR 66 2018 183-190 8 045F 510 |
language |
English |
source |
Enthalten in Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide Amsterdam volume:66 year:2018 pages:183-190 extent:8 |
sourceStr |
Enthalten in Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide Amsterdam volume:66 year:2018 pages:183-190 extent:8 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Traveling Thief Problem Variable Neighborhood Descent Graphics Processing Unit Local Search GRASP |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |
authorswithroles_txt_mv |
Araujo, Rodolfo Pereira @@aut@@ Rios, Eyder @@oth@@ Coelho, Igor Machado @@oth@@ Marzulo, Leandro A.J. @@oth@@ Clicia Castro, Maria @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV012993891 |
dewey-sort |
3510 |
id |
ELV042674050 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042674050</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626002026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.endm.2018.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000198A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042674050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1571-0653(18)30070-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Araujo, Rodolfo Pereira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling Thief Problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variable Neighborhood Descent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphics Processing Unit</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Local Search</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GRASP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rios, Eyder</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coelho, Igor Machado</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marzulo, Leandro A.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clicia Castro, Maria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Hemeda, O.M. ELSEVIER</subfield><subfield code="t">Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV012993891</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:183-190</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.endm.2018.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2018</subfield><subfield code="h">183-190</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Araujo, Rodolfo Pereira |
spellingShingle |
Araujo, Rodolfo Pereira ddc 510 ddc 530 ddc 610 bkl 44.90 Elsevier Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
authorStr |
Araujo, Rodolfo Pereira |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012993891 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 530 VZ 610 VZ 44.90 bkl A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP Elsevier |
topic |
ddc 510 ddc 530 ddc 610 bkl 44.90 Elsevier Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP |
topic_unstemmed |
ddc 510 ddc 530 ddc 610 bkl 44.90 Elsevier Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP |
topic_browse |
ddc 510 ddc 530 ddc 610 bkl 44.90 Elsevier Traveling Thief Problem Elsevier Variable Neighborhood Descent Elsevier Graphics Processing Unit Elsevier Local Search Elsevier GRASP |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
e r er i m c im imc l a m la lam c m c cm cmc |
hierarchy_parent_title |
Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |
hierarchy_parent_id |
ELV012993891 |
dewey-tens |
510 - Mathematics 530 - Physics 610 - Medicine & health |
hierarchy_top_title |
Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012993891 |
title |
A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
ctrlnum |
(DE-627)ELV042674050 (ELSEVIER)S1571-0653(18)30070-2 |
title_full |
A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
author_sort |
Araujo, Rodolfo Pereira |
journal |
Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |
journalStr |
Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
183 |
author_browse |
Araujo, Rodolfo Pereira |
container_volume |
66 |
physical |
8 |
class |
510 510 DE-600 530 VZ 610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Araujo, Rodolfo Pereira |
doi_str_mv |
10.1016/j.endm.2018.03.024 |
dewey-full |
510 530 610 |
title_sort |
a novel list-constrained randomized vnd approach in gpu for the traveling thief problem |
title_auth |
A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
abstract |
The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. |
abstractGer |
The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. |
abstract_unstemmed |
The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 |
title_short |
A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem |
url |
https://doi.org/10.1016/j.endm.2018.03.024 |
remote_bool |
true |
author2 |
Rios, Eyder Coelho, Igor Machado Marzulo, Leandro A.J. Clicia Castro, Maria |
author2Str |
Rios, Eyder Coelho, Igor Machado Marzulo, Leandro A.J. Clicia Castro, Maria |
ppnlink |
ELV012993891 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.endm.2018.03.024 |
up_date |
2024-07-06T16:48:10.495Z |
_version_ |
1803849029907382272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042674050</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626002026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.endm.2018.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000198A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042674050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1571-0653(18)30070-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Araujo, Rodolfo Pereira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel List-Constrained Randomized VND approach in GPU for the Traveling Thief Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Traveling Thief Problem (TTP) is a multi-component combinatorial optimization problem that combines two well-known problems in the literature: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). This paper proposes a novel list-constrained local search process inspired in Variable Neighborhood Descent (VND) for multiple neighborhood structures, combined with a metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP). The local search implementation was made in a Graphics Processing Unit (GPU) architecture in order to explore the massive number of computing cores to simultaneously explore neighbor solutions, while the GRASP was implemented exploring the natural parallelism of a multi-core CPU. The computational results were compared to state-of-the-art results in literature and indicate promising research directions for the design of novel search algorithms in high performance architectures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling Thief Problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variable Neighborhood Descent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphics Processing Unit</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Local Search</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GRASP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rios, Eyder</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coelho, Igor Machado</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marzulo, Leandro A.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clicia Castro, Maria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Hemeda, O.M. ELSEVIER</subfield><subfield code="t">Magnetic properties of the Ni–Cu–Zn system doped with magnesium oxide</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV012993891</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:183-190</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.endm.2018.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2018</subfield><subfield code="h">183-190</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.401041 |