Proteomic approaches to decipher cancer cell secretome
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related t...
Ausführliche Beschreibung
Autor*in: |
Brandi, Jessica [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate - Cho, Sung Beom ELSEVIER, 2014transfer abstract, London |
---|---|
Übergeordnetes Werk: |
volume:78 ; year:2018 ; pages:93-101 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.semcdb.2017.06.030 |
---|
Katalog-ID: |
ELV042929563 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV042929563 | ||
003 | DE-627 | ||
005 | 20230626002628.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.semcdb.2017.06.030 |2 doi | |
028 | 5 | 2 | |a GBV00000000000220A.pica |
035 | |a (DE-627)ELV042929563 | ||
035 | |a (ELSEVIER)S1084-9521(17)30301-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 500 |q VZ |
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Brandi, Jessica |e verfasserin |4 aut | |
245 | 1 | 0 | |a Proteomic approaches to decipher cancer cell secretome |
264 | 1 | |c 2018transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. | ||
520 | |a In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. | ||
650 | 7 | |a Conditioned media |2 Elsevier | |
650 | 7 | |a Secretome |2 Elsevier | |
650 | 7 | |a Mass spectrometry |2 Elsevier | |
650 | 7 | |a Bioinformatics |2 Elsevier | |
700 | 1 | |a Manfredi, Marcello |4 oth | |
700 | 1 | |a Speziali, Giulia |4 oth | |
700 | 1 | |a Gosetti, Fabio |4 oth | |
700 | 1 | |a Marengo, Emilio |4 oth | |
700 | 1 | |a Cecconi, Daniela |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Cho, Sung Beom ELSEVIER |t Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |d 2014transfer abstract |g London |w (DE-627)ELV017968445 |
773 | 1 | 8 | |g volume:78 |g year:2018 |g pages:93-101 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.semcdb.2017.06.030 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 78 |j 2018 |h 93-101 |g 9 | ||
953 | |2 045F |a 570 |
author_variant |
j b jb |
---|---|
matchkey_str |
brandijessicamanfredimarcellospezialigiu:2018----:rtoiapocetdcpecnec |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
33.25 31.00 |
publishDate |
2018 |
allfields |
10.1016/j.semcdb.2017.06.030 doi GBV00000000000220A.pica (DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Brandi, Jessica verfasserin aut Proteomic approaches to decipher cancer cell secretome 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier Manfredi, Marcello oth Speziali, Giulia oth Gosetti, Fabio oth Marengo, Emilio oth Cecconi, Daniela oth Enthalten in Academic Press Cho, Sung Beom ELSEVIER Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate 2014transfer abstract London (DE-627)ELV017968445 volume:78 year:2018 pages:93-101 extent:9 https://doi.org/10.1016/j.semcdb.2017.06.030 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2018 93-101 9 045F 570 |
spelling |
10.1016/j.semcdb.2017.06.030 doi GBV00000000000220A.pica (DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Brandi, Jessica verfasserin aut Proteomic approaches to decipher cancer cell secretome 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier Manfredi, Marcello oth Speziali, Giulia oth Gosetti, Fabio oth Marengo, Emilio oth Cecconi, Daniela oth Enthalten in Academic Press Cho, Sung Beom ELSEVIER Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate 2014transfer abstract London (DE-627)ELV017968445 volume:78 year:2018 pages:93-101 extent:9 https://doi.org/10.1016/j.semcdb.2017.06.030 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2018 93-101 9 045F 570 |
allfields_unstemmed |
10.1016/j.semcdb.2017.06.030 doi GBV00000000000220A.pica (DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Brandi, Jessica verfasserin aut Proteomic approaches to decipher cancer cell secretome 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier Manfredi, Marcello oth Speziali, Giulia oth Gosetti, Fabio oth Marengo, Emilio oth Cecconi, Daniela oth Enthalten in Academic Press Cho, Sung Beom ELSEVIER Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate 2014transfer abstract London (DE-627)ELV017968445 volume:78 year:2018 pages:93-101 extent:9 https://doi.org/10.1016/j.semcdb.2017.06.030 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2018 93-101 9 045F 570 |
allfieldsGer |
10.1016/j.semcdb.2017.06.030 doi GBV00000000000220A.pica (DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Brandi, Jessica verfasserin aut Proteomic approaches to decipher cancer cell secretome 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier Manfredi, Marcello oth Speziali, Giulia oth Gosetti, Fabio oth Marengo, Emilio oth Cecconi, Daniela oth Enthalten in Academic Press Cho, Sung Beom ELSEVIER Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate 2014transfer abstract London (DE-627)ELV017968445 volume:78 year:2018 pages:93-101 extent:9 https://doi.org/10.1016/j.semcdb.2017.06.030 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2018 93-101 9 045F 570 |
allfieldsSound |
10.1016/j.semcdb.2017.06.030 doi GBV00000000000220A.pica (DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Brandi, Jessica verfasserin aut Proteomic approaches to decipher cancer cell secretome 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier Manfredi, Marcello oth Speziali, Giulia oth Gosetti, Fabio oth Marengo, Emilio oth Cecconi, Daniela oth Enthalten in Academic Press Cho, Sung Beom ELSEVIER Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate 2014transfer abstract London (DE-627)ELV017968445 volume:78 year:2018 pages:93-101 extent:9 https://doi.org/10.1016/j.semcdb.2017.06.030 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2018 93-101 9 045F 570 |
language |
English |
source |
Enthalten in Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate London volume:78 year:2018 pages:93-101 extent:9 |
sourceStr |
Enthalten in Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate London volume:78 year:2018 pages:93-101 extent:9 |
format_phy_str_mv |
Article |
bklname |
Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Conditioned media Secretome Mass spectrometry Bioinformatics |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |
authorswithroles_txt_mv |
Brandi, Jessica @@aut@@ Manfredi, Marcello @@oth@@ Speziali, Giulia @@oth@@ Gosetti, Fabio @@oth@@ Marengo, Emilio @@oth@@ Cecconi, Daniela @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV017968445 |
dewey-sort |
3570 |
id |
ELV042929563 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042929563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626002628.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.semcdb.2017.06.030</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000220A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042929563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1084-9521(17)30301-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brandi, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteomic approaches to decipher cancer cell secretome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conditioned media</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secretome</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mass spectrometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioinformatics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manfredi, Marcello</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Speziali, Giulia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gosetti, Fabio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marengo, Emilio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecconi, Daniela</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Cho, Sung Beom ELSEVIER</subfield><subfield code="t">Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">London</subfield><subfield code="w">(DE-627)ELV017968445</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:93-101</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.semcdb.2017.06.030</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2018</subfield><subfield code="h">93-101</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Brandi, Jessica |
spellingShingle |
Brandi, Jessica ddc 570 ddc 540 ddc 500 bkl 33.25 bkl 31.00 Elsevier Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Proteomic approaches to decipher cancer cell secretome |
authorStr |
Brandi, Jessica |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017968445 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl Proteomic approaches to decipher cancer cell secretome Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics Elsevier |
topic |
ddc 570 ddc 540 ddc 500 bkl 33.25 bkl 31.00 Elsevier Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics |
topic_unstemmed |
ddc 570 ddc 540 ddc 500 bkl 33.25 bkl 31.00 Elsevier Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics |
topic_browse |
ddc 570 ddc 540 ddc 500 bkl 33.25 bkl 31.00 Elsevier Conditioned media Elsevier Secretome Elsevier Mass spectrometry Elsevier Bioinformatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m m mm g s gs f g fg e m em d c dc |
hierarchy_parent_title |
Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |
hierarchy_parent_id |
ELV017968445 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry 500 - Science |
hierarchy_top_title |
Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017968445 |
title |
Proteomic approaches to decipher cancer cell secretome |
ctrlnum |
(DE-627)ELV042929563 (ELSEVIER)S1084-9521(17)30301-4 |
title_full |
Proteomic approaches to decipher cancer cell secretome |
author_sort |
Brandi, Jessica |
journal |
Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |
journalStr |
Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
93 |
author_browse |
Brandi, Jessica |
container_volume |
78 |
physical |
9 |
class |
570 570 DE-600 540 VZ 500 VZ 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Brandi, Jessica |
doi_str_mv |
10.1016/j.semcdb.2017.06.030 |
dewey-full |
570 540 500 |
title_sort |
proteomic approaches to decipher cancer cell secretome |
title_auth |
Proteomic approaches to decipher cancer cell secretome |
abstract |
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. |
abstractGer |
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. |
abstract_unstemmed |
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_70 |
title_short |
Proteomic approaches to decipher cancer cell secretome |
url |
https://doi.org/10.1016/j.semcdb.2017.06.030 |
remote_bool |
true |
author2 |
Manfredi, Marcello Speziali, Giulia Gosetti, Fabio Marengo, Emilio Cecconi, Daniela |
author2Str |
Manfredi, Marcello Speziali, Giulia Gosetti, Fabio Marengo, Emilio Cecconi, Daniela |
ppnlink |
ELV017968445 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.semcdb.2017.06.030 |
up_date |
2024-07-06T17:28:27.211Z |
_version_ |
1803851564017778688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV042929563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626002628.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.semcdb.2017.06.030</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000220A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV042929563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1084-9521(17)30301-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brandi, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteomic approaches to decipher cancer cell secretome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conditioned media</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secretome</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mass spectrometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioinformatics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manfredi, Marcello</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Speziali, Giulia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gosetti, Fabio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marengo, Emilio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecconi, Daniela</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Cho, Sung Beom ELSEVIER</subfield><subfield code="t">Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">London</subfield><subfield code="w">(DE-627)ELV017968445</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:93-101</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.semcdb.2017.06.030</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2018</subfield><subfield code="h">93-101</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4021244 |