Syzygies for translational surfaces
A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational...
Ausführliche Beschreibung
Autor*in: |
Wang, Haohao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
21 |
---|
Übergeordnetes Werk: |
Enthalten in: Synergistic effect of NaTi - Lee, Song Yeul ELSEVIER, 2022, an international journal, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2018 ; pages:73-93 ; extent:21 |
Links: |
---|
DOI / URN: |
10.1016/j.jsc.2017.11.004 |
---|
Katalog-ID: |
ELV043147860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV043147860 | ||
003 | DE-627 | ||
005 | 20230626003227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jsc.2017.11.004 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica |
035 | |a (DE-627)ELV043147860 | ||
035 | |a (ELSEVIER)S0747-7171(17)30111-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Wang, Haohao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Syzygies for translational surfaces |
264 | 1 | |c 2018transfer abstract | |
300 | |a 21 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. | ||
520 | |a A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. | ||
650 | 7 | |a Syzygy |2 Elsevier | |
650 | 7 | |a μ-basis |2 Elsevier | |
650 | 7 | |a Implicit equation |2 Elsevier | |
650 | 7 | |a Translational surface |2 Elsevier | |
700 | 1 | |a Goldman, Ron |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Lee, Song Yeul ELSEVIER |t Synergistic effect of NaTi |d 2022 |d an international journal |g Amsterdam |w (DE-627)ELV008973822 |
773 | 1 | 8 | |g volume:89 |g year:2018 |g pages:73-93 |g extent:21 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jsc.2017.11.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 89 |j 2018 |h 73-93 |g 21 |
author_variant |
h w hw |
---|---|
matchkey_str |
wanghaohaogoldmanron:2018----:yyisotasainl |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2018 |
allfields |
10.1016/j.jsc.2017.11.004 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Haohao verfasserin aut Syzygies for translational surfaces 2018transfer abstract 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier Goldman, Ron oth Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:89 year:2018 pages:73-93 extent:21 https://doi.org/10.1016/j.jsc.2017.11.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 89 2018 73-93 21 |
spelling |
10.1016/j.jsc.2017.11.004 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Haohao verfasserin aut Syzygies for translational surfaces 2018transfer abstract 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier Goldman, Ron oth Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:89 year:2018 pages:73-93 extent:21 https://doi.org/10.1016/j.jsc.2017.11.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 89 2018 73-93 21 |
allfields_unstemmed |
10.1016/j.jsc.2017.11.004 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Haohao verfasserin aut Syzygies for translational surfaces 2018transfer abstract 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier Goldman, Ron oth Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:89 year:2018 pages:73-93 extent:21 https://doi.org/10.1016/j.jsc.2017.11.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 89 2018 73-93 21 |
allfieldsGer |
10.1016/j.jsc.2017.11.004 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Haohao verfasserin aut Syzygies for translational surfaces 2018transfer abstract 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier Goldman, Ron oth Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:89 year:2018 pages:73-93 extent:21 https://doi.org/10.1016/j.jsc.2017.11.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 89 2018 73-93 21 |
allfieldsSound |
10.1016/j.jsc.2017.11.004 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Haohao verfasserin aut Syzygies for translational surfaces 2018transfer abstract 21 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier Goldman, Ron oth Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:89 year:2018 pages:73-93 extent:21 https://doi.org/10.1016/j.jsc.2017.11.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 89 2018 73-93 21 |
language |
English |
source |
Enthalten in Synergistic effect of NaTi Amsterdam volume:89 year:2018 pages:73-93 extent:21 |
sourceStr |
Enthalten in Synergistic effect of NaTi Amsterdam volume:89 year:2018 pages:73-93 extent:21 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Syzygy μ-basis Implicit equation Translational surface |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Synergistic effect of NaTi |
authorswithroles_txt_mv |
Wang, Haohao @@aut@@ Goldman, Ron @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV008973822 |
dewey-sort |
3670 |
id |
ELV043147860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043147860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsc.2017.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043147860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0747-7171(17)30111-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haohao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Syzygies for translational surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Syzygy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">μ-basis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Implicit equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Translational surface</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldman, Ron</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Song Yeul ELSEVIER</subfield><subfield code="t">Synergistic effect of NaTi</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008973822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:73-93</subfield><subfield code="g">extent:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsc.2017.11.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2018</subfield><subfield code="h">73-93</subfield><subfield code="g">21</subfield></datafield></record></collection>
|
author |
Wang, Haohao |
spellingShingle |
Wang, Haohao ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Syzygies for translational surfaces |
authorStr |
Wang, Haohao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008973822 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Syzygies for translational surfaces Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface Elsevier |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Syzygy Elsevier μ-basis Elsevier Implicit equation Elsevier Translational surface |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r g rg |
hierarchy_parent_title |
Synergistic effect of NaTi |
hierarchy_parent_id |
ELV008973822 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Synergistic effect of NaTi |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008973822 |
title |
Syzygies for translational surfaces |
ctrlnum |
(DE-627)ELV043147860 (ELSEVIER)S0747-7171(17)30111-6 |
title_full |
Syzygies for translational surfaces |
author_sort |
Wang, Haohao |
journal |
Synergistic effect of NaTi |
journalStr |
Synergistic effect of NaTi |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
73 |
author_browse |
Wang, Haohao |
container_volume |
89 |
physical |
21 |
class |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Haohao |
doi_str_mv |
10.1016/j.jsc.2017.11.004 |
dewey-full |
670 530 660 |
title_sort |
syzygies for translational surfaces |
title_auth |
Syzygies for translational surfaces |
abstract |
A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. |
abstractGer |
A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. |
abstract_unstemmed |
A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Syzygies for translational surfaces |
url |
https://doi.org/10.1016/j.jsc.2017.11.004 |
remote_bool |
true |
author2 |
Goldman, Ron |
author2Str |
Goldman, Ron |
ppnlink |
ELV008973822 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jsc.2017.11.004 |
up_date |
2024-07-06T18:03:54.446Z |
_version_ |
1803853794585346048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043147860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsc.2017.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043147860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0747-7171(17)30111-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haohao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Syzygies for translational surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A translational surface is a rational tensor product surface generated from two rational space curves by translating one curve along the other curve. Translational surfaces are invariant under rigid motions: translating and rotating the two generating curves translates and rotates the translational surface by the same amount. We construct three special syzygies for a translational surface from a μ-basis of one of the generating space curves, and we show how to compute the implicit equation of a translational surface from these three special syzygies. Examples are provided to illustrate our theorems and flesh out our algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Syzygy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">μ-basis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Implicit equation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Translational surface</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldman, Ron</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Song Yeul ELSEVIER</subfield><subfield code="t">Synergistic effect of NaTi</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008973822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:73-93</subfield><subfield code="g">extent:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsc.2017.11.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2018</subfield><subfield code="h">73-93</subfield><subfield code="g">21</subfield></datafield></record></collection>
|
score |
7.402135 |