Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and m...
Ausführliche Beschreibung
Autor*in: |
Aparicio-Arroyo, Marta [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Robust global error bounds for uncertain linear inequality systems with applications - Chuong, T.D. ELSEVIER, 2016transfer abstract, Paris |
---|---|
Übergeordnetes Werk: |
volume:356 ; year:2018 ; number:6 ; pages:666-673 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.crma.2018.04.024 |
---|
Katalog-ID: |
ELV04321939X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04321939X | ||
003 | DE-627 | ||
005 | 20230626003337.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.crma.2018.04.024 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica |
035 | |a (DE-627)ELV04321939X | ||
035 | |a (ELSEVIER)S1631-073X(18)30151-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Aparicio-Arroyo, Marta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
264 | 1 | |c 2018transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. | ||
520 | |a For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. | ||
700 | 1 | |a Bradlow, Steven |4 oth | |
700 | 1 | |a Collier, Brian |4 oth | |
700 | 1 | |a García-Prada, Oscar |4 oth | |
700 | 1 | |a Gothen, Peter B. |4 oth | |
700 | 1 | |a Oliveira, André |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Chuong, T.D. ELSEVIER |t Robust global error bounds for uncertain linear inequality systems with applications |d 2016transfer abstract |g Paris |w (DE-627)ELV024881481 |
773 | 1 | 8 | |g volume:356 |g year:2018 |g number:6 |g pages:666-673 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.crma.2018.04.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 356 |j 2018 |e 6 |h 666-673 |g 8 |
author_variant |
m a a maa |
---|---|
matchkey_str |
aparicioarroyomartabradlowstevencollierb:2018----:xtcopnnsfoqufcgopersnainadh |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
52.56 |
publishDate |
2018 |
allfields |
10.1016/j.crma.2018.04.024 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica (DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 DE-627 ger DE-627 rakwb eng 510 VZ 690 VZ 530 620 VZ 52.56 bkl Aparicio-Arroyo, Marta verfasserin aut Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. Bradlow, Steven oth Collier, Brian oth García-Prada, Oscar oth Gothen, Peter B. oth Oliveira, André oth Enthalten in Elsevier Chuong, T.D. ELSEVIER Robust global error bounds for uncertain linear inequality systems with applications 2016transfer abstract Paris (DE-627)ELV024881481 volume:356 year:2018 number:6 pages:666-673 extent:8 https://doi.org/10.1016/j.crma.2018.04.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 356 2018 6 666-673 8 |
spelling |
10.1016/j.crma.2018.04.024 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica (DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 DE-627 ger DE-627 rakwb eng 510 VZ 690 VZ 530 620 VZ 52.56 bkl Aparicio-Arroyo, Marta verfasserin aut Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. Bradlow, Steven oth Collier, Brian oth García-Prada, Oscar oth Gothen, Peter B. oth Oliveira, André oth Enthalten in Elsevier Chuong, T.D. ELSEVIER Robust global error bounds for uncertain linear inequality systems with applications 2016transfer abstract Paris (DE-627)ELV024881481 volume:356 year:2018 number:6 pages:666-673 extent:8 https://doi.org/10.1016/j.crma.2018.04.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 356 2018 6 666-673 8 |
allfields_unstemmed |
10.1016/j.crma.2018.04.024 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica (DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 DE-627 ger DE-627 rakwb eng 510 VZ 690 VZ 530 620 VZ 52.56 bkl Aparicio-Arroyo, Marta verfasserin aut Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. Bradlow, Steven oth Collier, Brian oth García-Prada, Oscar oth Gothen, Peter B. oth Oliveira, André oth Enthalten in Elsevier Chuong, T.D. ELSEVIER Robust global error bounds for uncertain linear inequality systems with applications 2016transfer abstract Paris (DE-627)ELV024881481 volume:356 year:2018 number:6 pages:666-673 extent:8 https://doi.org/10.1016/j.crma.2018.04.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 356 2018 6 666-673 8 |
allfieldsGer |
10.1016/j.crma.2018.04.024 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica (DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 DE-627 ger DE-627 rakwb eng 510 VZ 690 VZ 530 620 VZ 52.56 bkl Aparicio-Arroyo, Marta verfasserin aut Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. Bradlow, Steven oth Collier, Brian oth García-Prada, Oscar oth Gothen, Peter B. oth Oliveira, André oth Enthalten in Elsevier Chuong, T.D. ELSEVIER Robust global error bounds for uncertain linear inequality systems with applications 2016transfer abstract Paris (DE-627)ELV024881481 volume:356 year:2018 number:6 pages:666-673 extent:8 https://doi.org/10.1016/j.crma.2018.04.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 356 2018 6 666-673 8 |
allfieldsSound |
10.1016/j.crma.2018.04.024 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica (DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 DE-627 ger DE-627 rakwb eng 510 VZ 690 VZ 530 620 VZ 52.56 bkl Aparicio-Arroyo, Marta verfasserin aut Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. Bradlow, Steven oth Collier, Brian oth García-Prada, Oscar oth Gothen, Peter B. oth Oliveira, André oth Enthalten in Elsevier Chuong, T.D. ELSEVIER Robust global error bounds for uncertain linear inequality systems with applications 2016transfer abstract Paris (DE-627)ELV024881481 volume:356 year:2018 number:6 pages:666-673 extent:8 https://doi.org/10.1016/j.crma.2018.04.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 356 2018 6 666-673 8 |
language |
English |
source |
Enthalten in Robust global error bounds for uncertain linear inequality systems with applications Paris volume:356 year:2018 number:6 pages:666-673 extent:8 |
sourceStr |
Enthalten in Robust global error bounds for uncertain linear inequality systems with applications Paris volume:356 year:2018 number:6 pages:666-673 extent:8 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Robust global error bounds for uncertain linear inequality systems with applications |
authorswithroles_txt_mv |
Aparicio-Arroyo, Marta @@aut@@ Bradlow, Steven @@oth@@ Collier, Brian @@oth@@ García-Prada, Oscar @@oth@@ Gothen, Peter B. @@oth@@ Oliveira, André @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV024881481 |
dewey-sort |
3510 |
id |
ELV04321939X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04321939X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003337.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.crma.2018.04.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04321939X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1631-073X(18)30151-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aparicio-Arroyo, Marta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bradlow, Steven</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collier, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García-Prada, Oscar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gothen, Peter B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oliveira, André</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Chuong, T.D. ELSEVIER</subfield><subfield code="t">Robust global error bounds for uncertain linear inequality systems with applications</subfield><subfield code="d">2016transfer abstract</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV024881481</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:356</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:666-673</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.crma.2018.04.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">356</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="h">666-673</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Aparicio-Arroyo, Marta |
spellingShingle |
Aparicio-Arroyo, Marta ddc 510 ddc 690 ddc 530 bkl 52.56 Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
authorStr |
Aparicio-Arroyo, Marta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV024881481 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 690 - Buildings 530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 VZ 690 VZ 530 620 VZ 52.56 bkl Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
topic |
ddc 510 ddc 690 ddc 530 bkl 52.56 |
topic_unstemmed |
ddc 510 ddc 690 ddc 530 bkl 52.56 |
topic_browse |
ddc 510 ddc 690 ddc 530 bkl 52.56 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s b sb b c bc o g p ogp p b g pb pbg a o ao |
hierarchy_parent_title |
Robust global error bounds for uncertain linear inequality systems with applications |
hierarchy_parent_id |
ELV024881481 |
dewey-tens |
510 - Mathematics 690 - Building & construction 530 - Physics 620 - Engineering |
hierarchy_top_title |
Robust global error bounds for uncertain linear inequality systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV024881481 |
title |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
ctrlnum |
(DE-627)ELV04321939X (ELSEVIER)S1631-073X(18)30151-1 |
title_full |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
author_sort |
Aparicio-Arroyo, Marta |
journal |
Robust global error bounds for uncertain linear inequality systems with applications |
journalStr |
Robust global error bounds for uncertain linear inequality systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
666 |
author_browse |
Aparicio-Arroyo, Marta |
container_volume |
356 |
physical |
8 |
class |
510 VZ 690 VZ 530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Aparicio-Arroyo, Marta |
doi_str_mv |
10.1016/j.crma.2018.04.024 |
dewey-full |
510 690 530 620 |
title_sort |
exotic components of so(p,q) surface group representations, and their higgs bundle avatars |
title_auth |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
abstract |
For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. |
abstractGer |
For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. |
abstract_unstemmed |
For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
6 |
title_short |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
url |
https://doi.org/10.1016/j.crma.2018.04.024 |
remote_bool |
true |
author2 |
Bradlow, Steven Collier, Brian García-Prada, Oscar Gothen, Peter B. Oliveira, André |
author2Str |
Bradlow, Steven Collier, Brian García-Prada, Oscar Gothen, Peter B. Oliveira, André |
ppnlink |
ELV024881481 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.crma.2018.04.024 |
up_date |
2024-07-06T18:14:44.275Z |
_version_ |
1803854475980439552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04321939X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003337.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.crma.2018.04.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000870.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04321939X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1631-073X(18)30151-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aparicio-Arroyo, Marta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO ( p , q ) with 2 < p < q . These groups lie outside formerly know classes of groups associated with exotic components.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bradlow, Steven</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collier, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García-Prada, Oscar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gothen, Peter B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oliveira, André</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Chuong, T.D. ELSEVIER</subfield><subfield code="t">Robust global error bounds for uncertain linear inequality systems with applications</subfield><subfield code="d">2016transfer abstract</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV024881481</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:356</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:666-673</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.crma.2018.04.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">356</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="h">666-673</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.3986397 |