Computational ghost imaging encryption based on fingerprint phase mask
A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image...
Ausführliche Beschreibung
Autor*in: |
Zhu, Jinan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis - Niu, Zhenzhen ELSEVIER, 2020, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:420 ; year:2018 ; day:1 ; month:08 ; pages:34-39 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.optcom.2018.03.014 |
---|
Katalog-ID: |
ELV043258824 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV043258824 | ||
003 | DE-627 | ||
005 | 20230626003424.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optcom.2018.03.014 |2 doi | |
028 | 5 | 2 | |a GBV00000000000301_01.pica |
035 | |a (DE-627)ELV043258824 | ||
035 | |a (ELSEVIER)S0030-4018(18)30193-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 580 |q VZ |
084 | |a AFRIKA |q DE-30 |2 fid | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.38 |2 bkl | ||
100 | 1 | |a Zhu, Jinan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational ghost imaging encryption based on fingerprint phase mask |
264 | 1 | |c 2018transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. | ||
520 | |a A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. | ||
650 | 7 | |a Computational ghost imaging encryption |2 Elsevier | |
650 | 7 | |a Fingerprint phase mask |2 Elsevier | |
650 | 7 | |a Digital holography |2 Elsevier | |
700 | 1 | |a Yang, Xiulun |4 oth | |
700 | 1 | |a Meng, Xiangfeng |4 oth | |
700 | 1 | |a Wang, Yurong |4 oth | |
700 | 1 | |a Yin, Yongkai |4 oth | |
700 | 1 | |a Sun, Xiaowen |4 oth | |
700 | 1 | |a Dong, Guoyan |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Niu, Zhenzhen ELSEVIER |t Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |d 2020 |g Amsterdam |w (DE-627)ELV004103645 |
773 | 1 | 8 | |g volume:420 |g year:2018 |g day:1 |g month:08 |g pages:34-39 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.optcom.2018.03.014 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-AFRIKA | ||
912 | |a FID-BIODIV | ||
936 | b | k | |a 42.38 |j Botanik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 420 |j 2018 |b 1 |c 0801 |h 34-39 |g 6 |
author_variant |
j z jz |
---|---|
matchkey_str |
zhujinanyangxiulunmengxiangfengwangyuron:2018----:opttoagotmgnecytobsdni |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
42.38 |
publishDate |
2018 |
allfields |
10.1016/j.optcom.2018.03.014 doi GBV00000000000301_01.pica (DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Zhu, Jinan verfasserin aut Computational ghost imaging encryption based on fingerprint phase mask 2018transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier Yang, Xiulun oth Meng, Xiangfeng oth Wang, Yurong oth Yin, Yongkai oth Sun, Xiaowen oth Dong, Guoyan oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 https://doi.org/10.1016/j.optcom.2018.03.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 420 2018 1 0801 34-39 6 |
spelling |
10.1016/j.optcom.2018.03.014 doi GBV00000000000301_01.pica (DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Zhu, Jinan verfasserin aut Computational ghost imaging encryption based on fingerprint phase mask 2018transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier Yang, Xiulun oth Meng, Xiangfeng oth Wang, Yurong oth Yin, Yongkai oth Sun, Xiaowen oth Dong, Guoyan oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 https://doi.org/10.1016/j.optcom.2018.03.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 420 2018 1 0801 34-39 6 |
allfields_unstemmed |
10.1016/j.optcom.2018.03.014 doi GBV00000000000301_01.pica (DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Zhu, Jinan verfasserin aut Computational ghost imaging encryption based on fingerprint phase mask 2018transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier Yang, Xiulun oth Meng, Xiangfeng oth Wang, Yurong oth Yin, Yongkai oth Sun, Xiaowen oth Dong, Guoyan oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 https://doi.org/10.1016/j.optcom.2018.03.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 420 2018 1 0801 34-39 6 |
allfieldsGer |
10.1016/j.optcom.2018.03.014 doi GBV00000000000301_01.pica (DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Zhu, Jinan verfasserin aut Computational ghost imaging encryption based on fingerprint phase mask 2018transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier Yang, Xiulun oth Meng, Xiangfeng oth Wang, Yurong oth Yin, Yongkai oth Sun, Xiaowen oth Dong, Guoyan oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 https://doi.org/10.1016/j.optcom.2018.03.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 420 2018 1 0801 34-39 6 |
allfieldsSound |
10.1016/j.optcom.2018.03.014 doi GBV00000000000301_01.pica (DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Zhu, Jinan verfasserin aut Computational ghost imaging encryption based on fingerprint phase mask 2018transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier Yang, Xiulun oth Meng, Xiangfeng oth Wang, Yurong oth Yin, Yongkai oth Sun, Xiaowen oth Dong, Guoyan oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 https://doi.org/10.1016/j.optcom.2018.03.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 420 2018 1 0801 34-39 6 |
language |
English |
source |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 |
sourceStr |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:420 year:2018 day:1 month:08 pages:34-39 extent:6 |
format_phy_str_mv |
Article |
bklname |
Botanik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Computational ghost imaging encryption Fingerprint phase mask Digital holography |
dewey-raw |
580 |
isfreeaccess_bool |
false |
container_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
authorswithroles_txt_mv |
Zhu, Jinan @@aut@@ Yang, Xiulun @@oth@@ Meng, Xiangfeng @@oth@@ Wang, Yurong @@oth@@ Yin, Yongkai @@oth@@ Sun, Xiaowen @@oth@@ Dong, Guoyan @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV004103645 |
dewey-sort |
3580 |
id |
ELV043258824 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043258824</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2018.03.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000301_01.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043258824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(18)30193-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Jinan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational ghost imaging encryption based on fingerprint phase mask</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational ghost imaging encryption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fingerprint phase mask</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Digital holography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yurong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yongkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xiaowen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Guoyan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:34-39</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2018.03.014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield><subfield code="j">2018</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">34-39</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
author |
Zhu, Jinan |
spellingShingle |
Zhu, Jinan ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Computational ghost imaging encryption based on fingerprint phase mask |
authorStr |
Zhu, Jinan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004103645 |
format |
electronic Article |
dewey-ones |
580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Computational ghost imaging encryption based on fingerprint phase mask Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography Elsevier |
topic |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography |
topic_unstemmed |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography |
topic_browse |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Computational ghost imaging encryption Elsevier Fingerprint phase mask Elsevier Digital holography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x y xy x m xm y w yw y y yy x s xs g d gd |
hierarchy_parent_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
hierarchy_parent_id |
ELV004103645 |
dewey-tens |
580 - Plants (Botany) |
hierarchy_top_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004103645 |
title |
Computational ghost imaging encryption based on fingerprint phase mask |
ctrlnum |
(DE-627)ELV043258824 (ELSEVIER)S0030-4018(18)30193-7 |
title_full |
Computational ghost imaging encryption based on fingerprint phase mask |
author_sort |
Zhu, Jinan |
journal |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
journalStr |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
34 |
author_browse |
Zhu, Jinan |
container_volume |
420 |
physical |
6 |
class |
580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Jinan |
doi_str_mv |
10.1016/j.optcom.2018.03.014 |
dewey-full |
580 |
title_sort |
computational ghost imaging encryption based on fingerprint phase mask |
title_auth |
Computational ghost imaging encryption based on fingerprint phase mask |
abstract |
A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. |
abstractGer |
A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. |
abstract_unstemmed |
A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV |
title_short |
Computational ghost imaging encryption based on fingerprint phase mask |
url |
https://doi.org/10.1016/j.optcom.2018.03.014 |
remote_bool |
true |
author2 |
Yang, Xiulun Meng, Xiangfeng Wang, Yurong Yin, Yongkai Sun, Xiaowen Dong, Guoyan |
author2Str |
Yang, Xiulun Meng, Xiangfeng Wang, Yurong Yin, Yongkai Sun, Xiaowen Dong, Guoyan |
ppnlink |
ELV004103645 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.optcom.2018.03.014 |
up_date |
2024-07-06T18:21:27.086Z |
_version_ |
1803854898357338112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043258824</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2018.03.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000301_01.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043258824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(18)30193-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Jinan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational ghost imaging encryption based on fingerprint phase mask</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational ghost imaging encryption method based on fingerprint phase mask is proposed. In this work, we introduce one’s fingerprint information into computational ghost imaging for the first time. The phase mask key in computational ghost imaging encryption is generated by a fingerprint image using digital holography method. As the phase key links to one’s fingerprint which is uniqueness, this method offers a significant improvement for the security of computational ghost imaging encryption. Furthermore, because a fingerprint can verify one’s identity, the proposed method can combine identity authentication with image decryption. In addition, the distances of recording and reconstruction during digital holography can be saved as additional keys which make the encryption system more secure. To verify the feasibility, security and ability to resist noise attack, some computer simulations are performed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational ghost imaging encryption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fingerprint phase mask</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Digital holography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yurong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yongkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xiaowen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Guoyan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:34-39</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2018.03.014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield><subfield code="j">2018</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">34-39</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.4019957 |