Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface
• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation dis...
Ausführliche Beschreibung
Autor*in: |
Afroz, Farhana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Umfang: |
19 |
---|
Übergeordnetes Werk: |
Enthalten in: Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics - Radünz, William Corrêa ELSEVIER, 2020, design, processes, equipment, economics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:138 ; year:2018 ; day:25 ; month:06 ; pages:154-172 ; extent:19 |
Links: |
---|
DOI / URN: |
10.1016/j.applthermaleng.2018.04.007 |
---|
Katalog-ID: |
ELV043432042 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV043432042 | ||
003 | DE-627 | ||
005 | 20230624103622.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2018.04.007 |2 doi | |
028 | 5 | 2 | |a GBV00000000000700.pica |
035 | |a (DE-627)ELV043432042 | ||
035 | |a (ELSEVIER)S1359-4311(18)30874-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Afroz, Farhana |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
264 | 1 | |c 2018 | |
300 | |a 19 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. | ||
650 | 7 | |a Jet impingement heat transfer |2 Elsevier | |
650 | 7 | |a Impinging jet |2 Elsevier | |
650 | 7 | |a Reverse stagnation flow |2 Elsevier | |
650 | 7 | |a Turbulent jet |2 Elsevier | |
650 | 7 | |a Annular jet |2 Elsevier | |
650 | 7 | |a Realizable <ce:italic>k-ε</ce:italic> turbulence model |2 Elsevier | |
700 | 1 | |a Sharif, Muhammad A.R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Radünz, William Corrêa ELSEVIER |t Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |d 2020 |d design, processes, equipment, economics |g Amsterdam [u.a.] |w (DE-627)ELV003905551 |
773 | 1 | 8 | |g volume:138 |g year:2018 |g day:25 |g month:06 |g pages:154-172 |g extent:19 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.applthermaleng.2018.04.007 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 138 |j 2018 |b 25 |c 0625 |h 154-172 |g 19 |
author_variant |
f a fa |
---|---|
matchkey_str |
afrozfarhanasharifmuhammadar:2018----:ueiasuyfublnanlrmignjtlwnhat |
hierarchy_sort_str |
2018 |
bklnumber |
52.56 |
publishDate |
2018 |
allfields |
10.1016/j.applthermaleng.2018.04.007 doi GBV00000000000700.pica (DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Afroz, Farhana verfasserin aut Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface 2018 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier Sharif, Muhammad A.R. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 https://doi.org/10.1016/j.applthermaleng.2018.04.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 138 2018 25 0625 154-172 19 |
spelling |
10.1016/j.applthermaleng.2018.04.007 doi GBV00000000000700.pica (DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Afroz, Farhana verfasserin aut Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface 2018 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier Sharif, Muhammad A.R. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 https://doi.org/10.1016/j.applthermaleng.2018.04.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 138 2018 25 0625 154-172 19 |
allfields_unstemmed |
10.1016/j.applthermaleng.2018.04.007 doi GBV00000000000700.pica (DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Afroz, Farhana verfasserin aut Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface 2018 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier Sharif, Muhammad A.R. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 https://doi.org/10.1016/j.applthermaleng.2018.04.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 138 2018 25 0625 154-172 19 |
allfieldsGer |
10.1016/j.applthermaleng.2018.04.007 doi GBV00000000000700.pica (DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Afroz, Farhana verfasserin aut Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface 2018 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier Sharif, Muhammad A.R. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 https://doi.org/10.1016/j.applthermaleng.2018.04.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 138 2018 25 0625 154-172 19 |
allfieldsSound |
10.1016/j.applthermaleng.2018.04.007 doi GBV00000000000700.pica (DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Afroz, Farhana verfasserin aut Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface 2018 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier Sharif, Muhammad A.R. oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 https://doi.org/10.1016/j.applthermaleng.2018.04.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 138 2018 25 0625 154-172 19 |
language |
English |
source |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 |
sourceStr |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:138 year:2018 day:25 month:06 pages:154-172 extent:19 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Jet impingement heat transfer Impinging jet Reverse stagnation flow Turbulent jet Annular jet Realizable <ce:italic>k-ε</ce:italic> turbulence model |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
authorswithroles_txt_mv |
Afroz, Farhana @@aut@@ Sharif, Muhammad A.R. @@oth@@ |
publishDateDaySort_date |
2018-01-25T00:00:00Z |
hierarchy_top_id |
ELV003905551 |
dewey-sort |
3530 |
id |
ELV043432042 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043432042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624103622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2018.04.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000700.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043432042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(18)30874-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afroz, Farhana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jet impingement heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impinging jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse stagnation flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Turbulent jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Annular jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Realizable <ce:italic>k-ε</ce:italic> turbulence model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Muhammad A.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:154-172</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2018.04.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2018</subfield><subfield code="b">25</subfield><subfield code="c">0625</subfield><subfield code="h">154-172</subfield><subfield code="g">19</subfield></datafield></record></collection>
|
author |
Afroz, Farhana |
spellingShingle |
Afroz, Farhana ddc 530 bkl 52.56 Elsevier Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
authorStr |
Afroz, Farhana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003905551 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 52.56 bkl Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model Elsevier |
topic |
ddc 530 bkl 52.56 Elsevier Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model |
topic_unstemmed |
ddc 530 bkl 52.56 Elsevier Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model |
topic_browse |
ddc 530 bkl 52.56 Elsevier Jet impingement heat transfer Elsevier Impinging jet Elsevier Reverse stagnation flow Elsevier Turbulent jet Elsevier Annular jet Elsevier Realizable <ce:italic>k-ε</ce:italic> turbulence model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m a s ma mas |
hierarchy_parent_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
hierarchy_parent_id |
ELV003905551 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003905551 |
title |
Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
ctrlnum |
(DE-627)ELV043432042 (ELSEVIER)S1359-4311(18)30874-3 |
title_full |
Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
author_sort |
Afroz, Farhana |
journal |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
journalStr |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
154 |
author_browse |
Afroz, Farhana |
container_volume |
138 |
physical |
19 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Afroz, Farhana |
doi_str_mv |
10.1016/j.applthermaleng.2018.04.007 |
dewey-full |
530 620 |
title_sort |
numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
title_auth |
Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
abstract |
• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. |
abstractGer |
• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. |
abstract_unstemmed |
• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface |
url |
https://doi.org/10.1016/j.applthermaleng.2018.04.007 |
remote_bool |
true |
author2 |
Sharif, Muhammad A.R. |
author2Str |
Sharif, Muhammad A.R. |
ppnlink |
ELV003905551 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.applthermaleng.2018.04.007 |
up_date |
2024-07-06T18:48:31.900Z |
_version_ |
1803856602098302976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043432042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624103622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2018.04.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000700.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043432042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(18)30874-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afroz, Farhana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Turbulent annular impinging jet heat transfer is numerically investigated. • Realizable k-ε turbulence model is chosen after validation against experimental data. • Three different flow-patterns as function of different parameters are identified. • Flow-field for small jet-to-target separation distance have distinguished reverse stagnation flow. • Compared to the round jet impingement, 10–15% heat transfer enhancement is achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jet impingement heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impinging jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse stagnation flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Turbulent jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Annular jet</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Realizable <ce:italic>k-ε</ce:italic> turbulence model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Muhammad A.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:154-172</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2018.04.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2018</subfield><subfield code="b">25</subfield><subfield code="c">0625</subfield><subfield code="h">154-172</subfield><subfield code="g">19</subfield></datafield></record></collection>
|
score |
7.399617 |