Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol
Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commer...
Ausführliche Beschreibung
Autor*in: |
Song, Xueying [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2018 ; number:27 ; day:5 ; month:07 ; pages:12091-12102 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2018.04.165 |
---|
Katalog-ID: |
ELV043554911 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV043554911 | ||
003 | DE-627 | ||
005 | 20230626003821.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180726s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2018.04.165 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica |
035 | |a (DE-627)ELV043554911 | ||
035 | |a (ELSEVIER)S0360-3199(18)31354-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Song, Xueying |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
264 | 1 | |c 2018transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. | ||
520 | |a Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. | ||
650 | 7 | |a Electrocatalysis |2 Elsevier | |
650 | 7 | |a Methanol oxidation |2 Elsevier | |
650 | 7 | |a Nickel phosphate |2 Elsevier | |
700 | 1 | |a Sun, Qian |4 oth | |
700 | 1 | |a Gao, Li |4 oth | |
700 | 1 | |a Chen, Wei |4 oth | |
700 | 1 | |a Wu, Yufeng |4 oth | |
700 | 1 | |a Li, Yamin |4 oth | |
700 | 1 | |a Mao, Liqun |4 oth | |
700 | 1 | |a Yang, Jing-He |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:43 |g year:2018 |g number:27 |g day:5 |g month:07 |g pages:12091-12102 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2018.04.165 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 43 |j 2018 |e 27 |b 5 |c 0705 |h 12091-12102 |g 12 |
author_variant |
x s xs |
---|---|
matchkey_str |
songxueyingsunqiangaolichenweiwuyufengli:2018----:iklhshtaavnepoiiglcrceiactlsfrhee |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
44.94 |
publishDate |
2018 |
allfields |
10.1016/j.ijhydene.2018.04.165 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Song, Xueying verfasserin aut Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol 2018transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier Sun, Qian oth Gao, Li oth Chen, Wei oth Wu, Yufeng oth Li, Yamin oth Mao, Liqun oth Yang, Jing-He oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 https://doi.org/10.1016/j.ijhydene.2018.04.165 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 43 2018 27 5 0705 12091-12102 12 |
spelling |
10.1016/j.ijhydene.2018.04.165 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Song, Xueying verfasserin aut Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol 2018transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier Sun, Qian oth Gao, Li oth Chen, Wei oth Wu, Yufeng oth Li, Yamin oth Mao, Liqun oth Yang, Jing-He oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 https://doi.org/10.1016/j.ijhydene.2018.04.165 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 43 2018 27 5 0705 12091-12102 12 |
allfields_unstemmed |
10.1016/j.ijhydene.2018.04.165 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Song, Xueying verfasserin aut Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol 2018transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier Sun, Qian oth Gao, Li oth Chen, Wei oth Wu, Yufeng oth Li, Yamin oth Mao, Liqun oth Yang, Jing-He oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 https://doi.org/10.1016/j.ijhydene.2018.04.165 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 43 2018 27 5 0705 12091-12102 12 |
allfieldsGer |
10.1016/j.ijhydene.2018.04.165 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Song, Xueying verfasserin aut Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol 2018transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier Sun, Qian oth Gao, Li oth Chen, Wei oth Wu, Yufeng oth Li, Yamin oth Mao, Liqun oth Yang, Jing-He oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 https://doi.org/10.1016/j.ijhydene.2018.04.165 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 43 2018 27 5 0705 12091-12102 12 |
allfieldsSound |
10.1016/j.ijhydene.2018.04.165 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica (DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Song, Xueying verfasserin aut Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol 2018transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier Sun, Qian oth Gao, Li oth Chen, Wei oth Wu, Yufeng oth Li, Yamin oth Mao, Liqun oth Yang, Jing-He oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 https://doi.org/10.1016/j.ijhydene.2018.04.165 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 43 2018 27 5 0705 12091-12102 12 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:43 year:2018 number:27 day:5 month:07 pages:12091-12102 extent:12 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Electrocatalysis Methanol oxidation Nickel phosphate |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Song, Xueying @@aut@@ Sun, Qian @@oth@@ Gao, Li @@oth@@ Chen, Wei @@oth@@ Wu, Yufeng @@oth@@ Li, Yamin @@oth@@ Mao, Liqun @@oth@@ Yang, Jing-He @@oth@@ |
publishDateDaySort_date |
2018-01-05T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3610 |
id |
ELV043554911 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043554911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2018.04.165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043554911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(18)31354-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Xueying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrocatalysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methanol oxidation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nickel phosphate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Qian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yufeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yamin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Liqun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jing-He</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:27</subfield><subfield code="g">day:5</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:12091-12102</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2018.04.165</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2018</subfield><subfield code="e">27</subfield><subfield code="b">5</subfield><subfield code="c">0705</subfield><subfield code="h">12091-12102</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
author |
Song, Xueying |
spellingShingle |
Song, Xueying ddc 610 bkl 44.94 Elsevier Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
authorStr |
Song, Xueying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.94 bkl Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate Elsevier |
topic |
ddc 610 bkl 44.94 Elsevier Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate |
topic_unstemmed |
ddc 610 bkl 44.94 Elsevier Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate |
topic_browse |
ddc 610 bkl 44.94 Elsevier Electrocatalysis Elsevier Methanol oxidation Elsevier Nickel phosphate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
q s qs l g lg w c wc y w yw y l yl l m lm j h y jhy |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
ctrlnum |
(DE-627)ELV043554911 (ELSEVIER)S0360-3199(18)31354-5 |
title_full |
Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
author_sort |
Song, Xueying |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
12091 |
author_browse |
Song, Xueying |
container_volume |
43 |
physical |
12 |
class |
610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Xueying |
doi_str_mv |
10.1016/j.ijhydene.2018.04.165 |
dewey-full |
610 |
title_sort |
nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
title_auth |
Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
abstract |
Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. |
abstractGer |
Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. |
abstract_unstemmed |
Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
27 |
title_short |
Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol |
url |
https://doi.org/10.1016/j.ijhydene.2018.04.165 |
remote_bool |
true |
author2 |
Sun, Qian Gao, Li Chen, Wei Wu, Yufeng Li, Yamin Mao, Liqun Yang, Jing-He |
author2Str |
Sun, Qian Gao, Li Chen, Wei Wu, Yufeng Li, Yamin Mao, Liqun Yang, Jing-He |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2018.04.165 |
up_date |
2024-07-06T19:08:06.991Z |
_version_ |
1803857834271571968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV043554911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626003821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180726s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2018.04.165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000886.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV043554911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(18)31354-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Xueying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous nickel phosphate nanotube (Meso NiPO NT) and mesoporous nickel phosphate nanosheet (Meso NiPO NS) are developed as catalysts for electrochemical methanol oxidation. Conventional mesoporous nickel phosphate which is composed of stacked nanocrystals (Meso NiPO), microporous VSB-5 and commercial nickel oxide (NiO) are used as control materials. Notably, both Meso NiPO NT (40.83 mA cm−2) and Meso NiPO NS (44.97 mA cm−2) exhibit much higher oxidation current density than VSB-5 (13.41 mA cm−2), Meso NiPO (19.85 mA cm−2) and commercial NiO (0.87 mA cm−2). As for the durability test on these materials modified fluorine-doped tin dioxide transparent conductive glass (FTO) electrodes, Meso NiPO NT displays the most stable performance and still retains 91.3% electrochemical activity, which perhaps benefit from its nanotube structure and large specific surface area (99.6 m2/g). Moreover, Meso NiPO NT has higher activity and more excellent stability than many of the previously reported nickel-based materials, suggesting a potential development for direct methanol fuel cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrocatalysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methanol oxidation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nickel phosphate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Qian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yufeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yamin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Liqun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jing-He</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:27</subfield><subfield code="g">day:5</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:12091-12102</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2018.04.165</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2018</subfield><subfield code="e">27</subfield><subfield code="b">5</subfield><subfield code="c">0705</subfield><subfield code="h">12091-12102</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
score |
7.4028378 |