Pattern mining-based video saliency detection: Application to moving object segmentation
In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps comput...
Ausführliche Beschreibung
Autor*in: |
Ramadan, Hiba [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver - Couch, Yvonne ELSEVIER, 2014, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2018 ; pages:567-579 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.compeleceng.2017.08.029 |
---|
Katalog-ID: |
ELV044056494 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV044056494 | ||
003 | DE-627 | ||
005 | 20230626004548.0 | ||
007 | cr uuu---uuuuu | ||
008 | 181113s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compeleceng.2017.08.029 |2 doi | |
028 | 5 | 2 | |a GBV00000000000359.pica |
035 | |a (DE-627)ELV044056494 | ||
035 | |a (ELSEVIER)S0045-7906(17)30422-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 43.13 |2 bkl | ||
084 | |a 50.17 |2 bkl | ||
084 | |a 58.53 |2 bkl | ||
100 | 1 | |a Ramadan, Hiba |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pattern mining-based video saliency detection: Application to moving object segmentation |
264 | 1 | |c 2018transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. | ||
520 | |a In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. | ||
700 | 1 | |a Tairi, Hamid |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Couch, Yvonne ELSEVIER |t Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |d 2014 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV017356792 |
773 | 1 | 8 | |g volume:70 |g year:2018 |g pages:567-579 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.compeleceng.2017.08.029 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 50.17 |j Sicherheitstechnik |q VZ |
936 | b | k | |a 58.53 |j Abfallwirtschaft |q VZ |
951 | |a AR | ||
952 | |d 70 |j 2018 |h 567-579 |g 13 |
author_variant |
h r hr |
---|---|
matchkey_str |
ramadanhibatairihamid:2018----:atrmnnbsdieslecdtcinplctotmv |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
43.13 50.17 58.53 |
publishDate |
2018 |
allfields |
10.1016/j.compeleceng.2017.08.029 doi GBV00000000000359.pica (DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 DE-627 ger DE-627 rakwb eng 610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Ramadan, Hiba verfasserin aut Pattern mining-based video saliency detection: Application to moving object segmentation 2018transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. Tairi, Hamid oth Enthalten in Elsevier Science Couch, Yvonne ELSEVIER Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver 2014 an international journal Amsterdam [u.a.] (DE-627)ELV017356792 volume:70 year:2018 pages:567-579 extent:13 https://doi.org/10.1016/j.compeleceng.2017.08.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 43.13 Umwelttoxikologie VZ 50.17 Sicherheitstechnik VZ 58.53 Abfallwirtschaft VZ AR 70 2018 567-579 13 |
spelling |
10.1016/j.compeleceng.2017.08.029 doi GBV00000000000359.pica (DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 DE-627 ger DE-627 rakwb eng 610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Ramadan, Hiba verfasserin aut Pattern mining-based video saliency detection: Application to moving object segmentation 2018transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. Tairi, Hamid oth Enthalten in Elsevier Science Couch, Yvonne ELSEVIER Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver 2014 an international journal Amsterdam [u.a.] (DE-627)ELV017356792 volume:70 year:2018 pages:567-579 extent:13 https://doi.org/10.1016/j.compeleceng.2017.08.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 43.13 Umwelttoxikologie VZ 50.17 Sicherheitstechnik VZ 58.53 Abfallwirtschaft VZ AR 70 2018 567-579 13 |
allfields_unstemmed |
10.1016/j.compeleceng.2017.08.029 doi GBV00000000000359.pica (DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 DE-627 ger DE-627 rakwb eng 610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Ramadan, Hiba verfasserin aut Pattern mining-based video saliency detection: Application to moving object segmentation 2018transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. Tairi, Hamid oth Enthalten in Elsevier Science Couch, Yvonne ELSEVIER Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver 2014 an international journal Amsterdam [u.a.] (DE-627)ELV017356792 volume:70 year:2018 pages:567-579 extent:13 https://doi.org/10.1016/j.compeleceng.2017.08.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 43.13 Umwelttoxikologie VZ 50.17 Sicherheitstechnik VZ 58.53 Abfallwirtschaft VZ AR 70 2018 567-579 13 |
allfieldsGer |
10.1016/j.compeleceng.2017.08.029 doi GBV00000000000359.pica (DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 DE-627 ger DE-627 rakwb eng 610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Ramadan, Hiba verfasserin aut Pattern mining-based video saliency detection: Application to moving object segmentation 2018transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. Tairi, Hamid oth Enthalten in Elsevier Science Couch, Yvonne ELSEVIER Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver 2014 an international journal Amsterdam [u.a.] (DE-627)ELV017356792 volume:70 year:2018 pages:567-579 extent:13 https://doi.org/10.1016/j.compeleceng.2017.08.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 43.13 Umwelttoxikologie VZ 50.17 Sicherheitstechnik VZ 58.53 Abfallwirtschaft VZ AR 70 2018 567-579 13 |
allfieldsSound |
10.1016/j.compeleceng.2017.08.029 doi GBV00000000000359.pica (DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 DE-627 ger DE-627 rakwb eng 610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Ramadan, Hiba verfasserin aut Pattern mining-based video saliency detection: Application to moving object segmentation 2018transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. Tairi, Hamid oth Enthalten in Elsevier Science Couch, Yvonne ELSEVIER Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver 2014 an international journal Amsterdam [u.a.] (DE-627)ELV017356792 volume:70 year:2018 pages:567-579 extent:13 https://doi.org/10.1016/j.compeleceng.2017.08.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 43.13 Umwelttoxikologie VZ 50.17 Sicherheitstechnik VZ 58.53 Abfallwirtschaft VZ AR 70 2018 567-579 13 |
language |
English |
source |
Enthalten in Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver Amsterdam [u.a.] volume:70 year:2018 pages:567-579 extent:13 |
sourceStr |
Enthalten in Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver Amsterdam [u.a.] volume:70 year:2018 pages:567-579 extent:13 |
format_phy_str_mv |
Article |
bklname |
Umwelttoxikologie Sicherheitstechnik Abfallwirtschaft |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |
authorswithroles_txt_mv |
Ramadan, Hiba @@aut@@ Tairi, Hamid @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV017356792 |
dewey-sort |
3610 |
id |
ELV044056494 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044056494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626004548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2017.08.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044056494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(17)30422-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramadan, Hiba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern mining-based video saliency detection: Application to moving object segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tairi, Hamid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Couch, Yvonne ELSEVIER</subfield><subfield code="t">Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver</subfield><subfield code="d">2014</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017356792</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:567-579</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compeleceng.2017.08.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.17</subfield><subfield code="j">Sicherheitstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2018</subfield><subfield code="h">567-579</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
author |
Ramadan, Hiba |
spellingShingle |
Ramadan, Hiba ddc 610 ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 Pattern mining-based video saliency detection: Application to moving object segmentation |
authorStr |
Ramadan, Hiba |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017356792 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl Pattern mining-based video saliency detection: Application to moving object segmentation |
topic |
ddc 610 ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 |
topic_unstemmed |
ddc 610 ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 |
topic_browse |
ddc 610 ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h t ht |
hierarchy_parent_title |
Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |
hierarchy_parent_id |
ELV017356792 |
dewey-tens |
610 - Medicine & health 530 - Physics |
hierarchy_top_title |
Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017356792 |
title |
Pattern mining-based video saliency detection: Application to moving object segmentation |
ctrlnum |
(DE-627)ELV044056494 (ELSEVIER)S0045-7906(17)30422-6 |
title_full |
Pattern mining-based video saliency detection: Application to moving object segmentation |
author_sort |
Ramadan, Hiba |
journal |
Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |
journalStr |
Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
567 |
author_browse |
Ramadan, Hiba |
container_volume |
70 |
physical |
13 |
class |
610 VZ 530 VZ 43.13 bkl 50.17 bkl 58.53 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ramadan, Hiba |
doi_str_mv |
10.1016/j.compeleceng.2017.08.029 |
dewey-full |
610 530 |
title_sort |
pattern mining-based video saliency detection: application to moving object segmentation |
title_auth |
Pattern mining-based video saliency detection: Application to moving object segmentation |
abstract |
In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. |
abstractGer |
In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. |
abstract_unstemmed |
In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_23 GBV_ILN_40 GBV_ILN_70 |
title_short |
Pattern mining-based video saliency detection: Application to moving object segmentation |
url |
https://doi.org/10.1016/j.compeleceng.2017.08.029 |
remote_bool |
true |
author2 |
Tairi, Hamid |
author2Str |
Tairi, Hamid |
ppnlink |
ELV017356792 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.compeleceng.2017.08.029 |
up_date |
2024-07-06T20:28:07.397Z |
_version_ |
1803862867861045248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044056494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626004548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2017.08.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044056494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(17)30422-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramadan, Hiba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern mining-based video saliency detection: Application to moving object segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we present a new model for spatiotemporal saliency detection. Instead of previous works which combine the image saliency in the spatial domain with motion cues to build their video saliency model, we propose to apply the pattern mining (PM) algorithm. From initial saliency maps computed in spatial and temporal domains, discriminative spatiotemporal saliency patterns can be recognized and their label information is propagated to obtain the final saliency map. Our model ensures a good compromise between image saliency and motion saliency and presents an accurate prediction to estimate salient regions in comparison with other methods for video saliency detection. Finally, as an application of our algorithm, our spatiotemporal saliency map is combined with appearance models and dynamic location models into an energy minimization framework to segment salient moving object. Experiments show a good performance of our algorithm for moving object segmentation (MOS) on benchmark datasets.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tairi, Hamid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Couch, Yvonne ELSEVIER</subfield><subfield code="t">Brain-derived microvesicles confer sickness behaviours by switching on the acute phase response in the liver</subfield><subfield code="d">2014</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017356792</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:567-579</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compeleceng.2017.08.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.17</subfield><subfield code="j">Sicherheitstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2018</subfield><subfield code="h">567-579</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
score |
7.401639 |