A new low-permeability reservoir core analysis method based on rate-transient analysis theory
Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are curren...
Ausführliche Beschreibung
Autor*in: |
Clarkson, Christopher R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias - Yang, Chaoqiang ELSEVIER, 2018, the science and technology of fuel and energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:235 ; year:2019 ; day:1 ; month:01 ; pages:1530-1543 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.fuel.2018.07.115 |
---|
Katalog-ID: |
ELV044312008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV044312008 | ||
003 | DE-627 | ||
005 | 20230626004941.0 | ||
007 | cr uuu---uuuuu | ||
008 | 181113s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fuel.2018.07.115 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica |
035 | |a (DE-627)ELV044312008 | ||
035 | |a (ELSEVIER)S0016-2361(18)31314-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Clarkson, Christopher R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
264 | 1 | |c 2019transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. | ||
520 | |a Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. | ||
650 | 7 | |a Rate-transient analysis |2 Elsevier | |
650 | 7 | |a Low-permeability reservoirs |2 Elsevier | |
650 | 7 | |a Permeability |2 Elsevier | |
650 | 7 | |a Core analysis |2 Elsevier | |
700 | 1 | |a Vahedian, Atena |4 oth | |
700 | 1 | |a Ghanizadeh, Amin |4 oth | |
700 | 1 | |a Song, Chengyao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yang, Chaoqiang ELSEVIER |t Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |d 2018 |d the science and technology of fuel and energy |g New York, NY [u.a.] |w (DE-627)ELV000307122 |
773 | 1 | 8 | |g volume:235 |g year:2019 |g day:1 |g month:01 |g pages:1530-1543 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fuel.2018.07.115 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 235 |j 2019 |b 1 |c 0101 |h 1530-1543 |g 14 |
author_variant |
c r c cr crc |
---|---|
matchkey_str |
clarksonchristopherrvahedianatenaghaniza:2019----:nwoprebltrsroroenlssehdaeortta |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
51.00 |
publishDate |
2019 |
allfields |
10.1016/j.fuel.2018.07.115 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica (DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 DE-627 ger DE-627 rakwb eng 530 600 670 VZ 51.00 bkl Clarkson, Christopher R. verfasserin aut A new low-permeability reservoir core analysis method based on rate-transient analysis theory 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier Vahedian, Atena oth Ghanizadeh, Amin oth Song, Chengyao oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 https://doi.org/10.1016/j.fuel.2018.07.115 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 235 2019 1 0101 1530-1543 14 |
spelling |
10.1016/j.fuel.2018.07.115 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica (DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 DE-627 ger DE-627 rakwb eng 530 600 670 VZ 51.00 bkl Clarkson, Christopher R. verfasserin aut A new low-permeability reservoir core analysis method based on rate-transient analysis theory 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier Vahedian, Atena oth Ghanizadeh, Amin oth Song, Chengyao oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 https://doi.org/10.1016/j.fuel.2018.07.115 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 235 2019 1 0101 1530-1543 14 |
allfields_unstemmed |
10.1016/j.fuel.2018.07.115 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica (DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 DE-627 ger DE-627 rakwb eng 530 600 670 VZ 51.00 bkl Clarkson, Christopher R. verfasserin aut A new low-permeability reservoir core analysis method based on rate-transient analysis theory 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier Vahedian, Atena oth Ghanizadeh, Amin oth Song, Chengyao oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 https://doi.org/10.1016/j.fuel.2018.07.115 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 235 2019 1 0101 1530-1543 14 |
allfieldsGer |
10.1016/j.fuel.2018.07.115 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica (DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 DE-627 ger DE-627 rakwb eng 530 600 670 VZ 51.00 bkl Clarkson, Christopher R. verfasserin aut A new low-permeability reservoir core analysis method based on rate-transient analysis theory 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier Vahedian, Atena oth Ghanizadeh, Amin oth Song, Chengyao oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 https://doi.org/10.1016/j.fuel.2018.07.115 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 235 2019 1 0101 1530-1543 14 |
allfieldsSound |
10.1016/j.fuel.2018.07.115 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica (DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 DE-627 ger DE-627 rakwb eng 530 600 670 VZ 51.00 bkl Clarkson, Christopher R. verfasserin aut A new low-permeability reservoir core analysis method based on rate-transient analysis theory 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier Vahedian, Atena oth Ghanizadeh, Amin oth Song, Chengyao oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 https://doi.org/10.1016/j.fuel.2018.07.115 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 235 2019 1 0101 1530-1543 14 |
language |
English |
source |
Enthalten in Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias New York, NY [u.a.] volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 |
sourceStr |
Enthalten in Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias New York, NY [u.a.] volume:235 year:2019 day:1 month:01 pages:1530-1543 extent:14 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Rate-transient analysis Low-permeability reservoirs Permeability Core analysis |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
authorswithroles_txt_mv |
Clarkson, Christopher R. @@aut@@ Vahedian, Atena @@oth@@ Ghanizadeh, Amin @@oth@@ Song, Chengyao @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV000307122 |
dewey-sort |
3530 |
id |
ELV044312008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044312008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626004941.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2018.07.115</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044312008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(18)31314-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Clarkson, Christopher R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new low-permeability reservoir core analysis method based on rate-transient analysis theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate-transient analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low-permeability reservoirs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permeability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vahedian, Atena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghanizadeh, Amin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Chengyao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Chaoqiang ELSEVIER</subfield><subfield code="t">Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias</subfield><subfield code="d">2018</subfield><subfield code="d">the science and technology of fuel and energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000307122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1530-1543</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fuel.2018.07.115</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">1530-1543</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
author |
Clarkson, Christopher R. |
spellingShingle |
Clarkson, Christopher R. ddc 530 bkl 51.00 Elsevier Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
authorStr |
Clarkson, Christopher R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000307122 |
format |
electronic Article |
dewey-ones |
530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 600 670 VZ 51.00 bkl A new low-permeability reservoir core analysis method based on rate-transient analysis theory Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis Elsevier |
topic |
ddc 530 bkl 51.00 Elsevier Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis |
topic_unstemmed |
ddc 530 bkl 51.00 Elsevier Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis |
topic_browse |
ddc 530 bkl 51.00 Elsevier Rate-transient analysis Elsevier Low-permeability reservoirs Elsevier Permeability Elsevier Core analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a v av a g ag c s cs |
hierarchy_parent_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
hierarchy_parent_id |
ELV000307122 |
dewey-tens |
530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000307122 |
title |
A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
ctrlnum |
(DE-627)ELV044312008 (ELSEVIER)S0016-2361(18)31314-0 |
title_full |
A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
author_sort |
Clarkson, Christopher R. |
journal |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
journalStr |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
1530 |
author_browse |
Clarkson, Christopher R. |
container_volume |
235 |
physical |
14 |
class |
530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Clarkson, Christopher R. |
doi_str_mv |
10.1016/j.fuel.2018.07.115 |
dewey-full |
530 600 670 |
title_sort |
a new low-permeability reservoir core analysis method based on rate-transient analysis theory |
title_auth |
A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
abstract |
Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. |
abstractGer |
Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. |
abstract_unstemmed |
Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
A new low-permeability reservoir core analysis method based on rate-transient analysis theory |
url |
https://doi.org/10.1016/j.fuel.2018.07.115 |
remote_bool |
true |
author2 |
Vahedian, Atena Ghanizadeh, Amin Song, Chengyao |
author2Str |
Vahedian, Atena Ghanizadeh, Amin Song, Chengyao |
ppnlink |
ELV000307122 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.fuel.2018.07.115 |
up_date |
2024-07-06T21:09:24.628Z |
_version_ |
1803865465427066880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044312008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626004941.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2018.07.115</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001213.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044312008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(18)31314-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Clarkson, Christopher R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new low-permeability reservoir core analysis method based on rate-transient analysis theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate-transient analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low-permeability reservoirs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permeability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vahedian, Atena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghanizadeh, Amin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Chengyao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Chaoqiang ELSEVIER</subfield><subfield code="t">Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias</subfield><subfield code="d">2018</subfield><subfield code="d">the science and technology of fuel and energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000307122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1530-1543</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fuel.2018.07.115</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">1530-1543</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.4007616 |