Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction
Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojun...
Ausführliche Beschreibung
Autor*in: |
Liu, Zhiyong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method - Xiao, Hong ELSEVIER, 2013, the international journal on the science and technology of electrochemical energy systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:401 ; year:2018 ; day:15 ; month:10 ; pages:303-311 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.jpowsour.2018.09.007 |
---|
Katalog-ID: |
ELV044458304 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV044458304 | ||
003 | DE-627 | ||
005 | 20230626005222.0 | ||
007 | cr uuu---uuuuu | ||
008 | 181113s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2018.09.007 |2 doi | |
028 | 5 | 2 | |a GBV00000000000398.pica |
035 | |a (DE-627)ELV044458304 | ||
035 | |a (ELSEVIER)S0378-7753(18)30978-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Liu, Zhiyong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
264 | 1 | |c 2018transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. | ||
520 | |a Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. | ||
650 | 7 | |a Perovskite solar cell |2 Elsevier | |
650 | 7 | |a Absorption |2 Elsevier | |
650 | 7 | |a Electron mobility |2 Elsevier | |
650 | 7 | |a Zinc oxide |2 Elsevier | |
650 | 7 | |a Bulk heterojunction |2 Elsevier | |
700 | 1 | |a He, Tingwei |4 oth | |
700 | 1 | |a Wang, Huihui |4 oth | |
700 | 1 | |a Jain, Sagar M. |4 oth | |
700 | 1 | |a Liu, Kaikai |4 oth | |
700 | 1 | |a Yang, Jien |4 oth | |
700 | 1 | |a Zhang, Na |4 oth | |
700 | 1 | |a Liu, Hairui |4 oth | |
700 | 1 | |a Yuan, Mingjian |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xiao, Hong ELSEVIER |t Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |d 2013 |d the international journal on the science and technology of electrochemical energy systems |g New York, NY [u.a.] |w (DE-627)ELV00098745X |
773 | 1 | 8 | |g volume:401 |g year:2018 |g day:15 |g month:10 |g pages:303-311 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpowsour.2018.09.007 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 401 |j 2018 |b 15 |c 1015 |h 303-311 |g 9 |
author_variant |
z l zl |
---|---|
matchkey_str |
liuzhiyonghetingweiwanghuihuijainsagarml:2018----:mrvmniteefracoivrepaaprvktslrelvahccifops3enncifops3enpienlcotxe |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
50.92 |
publishDate |
2018 |
allfields |
10.1016/j.jpowsour.2018.09.007 doi GBV00000000000398.pica (DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Liu, Zhiyong verfasserin aut Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier He, Tingwei oth Wang, Huihui oth Jain, Sagar M. oth Liu, Kaikai oth Yang, Jien oth Zhang, Na oth Liu, Hairui oth Yuan, Mingjian oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 https://doi.org/10.1016/j.jpowsour.2018.09.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 401 2018 15 1015 303-311 9 |
spelling |
10.1016/j.jpowsour.2018.09.007 doi GBV00000000000398.pica (DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Liu, Zhiyong verfasserin aut Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier He, Tingwei oth Wang, Huihui oth Jain, Sagar M. oth Liu, Kaikai oth Yang, Jien oth Zhang, Na oth Liu, Hairui oth Yuan, Mingjian oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 https://doi.org/10.1016/j.jpowsour.2018.09.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 401 2018 15 1015 303-311 9 |
allfields_unstemmed |
10.1016/j.jpowsour.2018.09.007 doi GBV00000000000398.pica (DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Liu, Zhiyong verfasserin aut Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier He, Tingwei oth Wang, Huihui oth Jain, Sagar M. oth Liu, Kaikai oth Yang, Jien oth Zhang, Na oth Liu, Hairui oth Yuan, Mingjian oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 https://doi.org/10.1016/j.jpowsour.2018.09.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 401 2018 15 1015 303-311 9 |
allfieldsGer |
10.1016/j.jpowsour.2018.09.007 doi GBV00000000000398.pica (DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Liu, Zhiyong verfasserin aut Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier He, Tingwei oth Wang, Huihui oth Jain, Sagar M. oth Liu, Kaikai oth Yang, Jien oth Zhang, Na oth Liu, Hairui oth Yuan, Mingjian oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 https://doi.org/10.1016/j.jpowsour.2018.09.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 401 2018 15 1015 303-311 9 |
allfieldsSound |
10.1016/j.jpowsour.2018.09.007 doi GBV00000000000398.pica (DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Liu, Zhiyong verfasserin aut Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction 2018transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier He, Tingwei oth Wang, Huihui oth Jain, Sagar M. oth Liu, Kaikai oth Yang, Jien oth Zhang, Na oth Liu, Hairui oth Yuan, Mingjian oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 https://doi.org/10.1016/j.jpowsour.2018.09.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 401 2018 15 1015 303-311 9 |
language |
English |
source |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 |
sourceStr |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:401 year:2018 day:15 month:10 pages:303-311 extent:9 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Perovskite solar cell Absorption Electron mobility Zinc oxide Bulk heterojunction |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
authorswithroles_txt_mv |
Liu, Zhiyong @@aut@@ He, Tingwei @@oth@@ Wang, Huihui @@oth@@ Jain, Sagar M. @@oth@@ Liu, Kaikai @@oth@@ Yang, Jien @@oth@@ Zhang, Na @@oth@@ Liu, Hairui @@oth@@ Yuan, Mingjian @@oth@@ |
publishDateDaySort_date |
2018-01-15T00:00:00Z |
hierarchy_top_id |
ELV00098745X |
dewey-sort |
3690 |
id |
ELV044458304 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044458304</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626005222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2018.09.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000398.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044458304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(18)30978-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perovskite solar cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zinc oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bulk heterojunction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huihui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jain, Sagar M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kaikai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Na</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hairui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:401</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:303-311</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2018.09.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">401</subfield><subfield code="j">2018</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">303-311</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
author |
Liu, Zhiyong |
spellingShingle |
Liu, Zhiyong ddc 690 bkl 50.92 Elsevier Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
authorStr |
Liu, Zhiyong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00098745X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.92 bkl Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction Elsevier |
topic |
ddc 690 bkl 50.92 Elsevier Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction |
topic_unstemmed |
ddc 690 bkl 50.92 Elsevier Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction |
topic_browse |
ddc 690 bkl 50.92 Elsevier Perovskite solar cell Elsevier Absorption Elsevier Electron mobility Elsevier Zinc oxide Elsevier Bulk heterojunction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t h th h w hw s m j sm smj k l kl j y jy n z nz h l hl m y my |
hierarchy_parent_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
hierarchy_parent_id |
ELV00098745X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00098745X |
title |
Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
ctrlnum |
(DE-627)ELV044458304 (ELSEVIER)S0378-7753(18)30978-9 |
title_full |
Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
author_sort |
Liu, Zhiyong |
journal |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
journalStr |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
303 |
author_browse |
Liu, Zhiyong |
container_volume |
401 |
physical |
9 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Zhiyong |
doi_str_mv |
10.1016/j.jpowsour.2018.09.007 |
dewey-full |
690 |
title_sort |
improvement in the performance of inverted planar perovskite solar cells via the ch<ce:inf loc="post">3</ce:inf>nh<ce:inf loc="post">3</ce:inf>pbi<ce:inf loc="post">3-x</ce:inf>cl<ce:inf loc="post">x</ce:inf>:zno bulk heterojunction |
title_auth |
Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
abstract |
Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. |
abstractGer |
Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. |
abstract_unstemmed |
Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction |
url |
https://doi.org/10.1016/j.jpowsour.2018.09.007 |
remote_bool |
true |
author2 |
He, Tingwei Wang, Huihui Jain, Sagar M. Liu, Kaikai Yang, Jien Zhang, Na Liu, Hairui Yuan, Mingjian |
author2Str |
He, Tingwei Wang, Huihui Jain, Sagar M. Liu, Kaikai Yang, Jien Zhang, Na Liu, Hairui Yuan, Mingjian |
ppnlink |
ELV00098745X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jpowsour.2018.09.007 |
up_date |
2024-07-06T21:33:15.226Z |
_version_ |
1803866965516746752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV044458304</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626005222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181113s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2018.09.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000398.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV044458304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(18)30978-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improvement in the performance of inverted planar perovskite solar cells via the CH<ce:inf loc="post">3</ce:inf>NH<ce:inf loc="post">3</ce:inf>PbI<ce:inf loc="post">3-x</ce:inf>Cl<ce:inf loc="post">x</ce:inf>:ZnO bulk heterojunction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zinc oxide (ZnO) as an electron transport material has been used in regular planar perovskite solar cells (PSCs). Herein, ZnO nanoparticles serve as an additive directly in perovskite active layer in order to fabricate a bulk-heterojunction inverted planar PSC. The CH3NH3PbI3-xClx:ZnO bulk heterojunction is prepared by mixing ZnO nanoparticles into CH3NH3PbI3-xClx precursor solution. ZnO nanoparticles act as catalytic centers and induce the growth of perovskite grains leading to the formation of large-size perovskite crystals. Remarkably, hysterysis-free power conversion efficiency of 17.26% is achieved when precisely control the concentration of ZnO nanoparticles in CH3NH3PbIxCl3-x:ZnO bulk heterojunction active layer. The presence of ZnO nanoparticles in the perovskite films enhances the conductivity and electron mobility. Efficient charge injection of CH3NH3PbIxCl3-x:ZnO film can improve charge extraction in the PSCs. Moreover, the PSCs with CH3NH3PbIxCl3-x:ZnO bulk heterojunction exhibit high fill factor of 77.3% and short current density of 22.71 mA cm−2, which is attributed to improved perovskite quality. The bulk heterojunction structure is fabricated by combining perovskite and metal oxides, which is of great importance to the development and commercialization of PSCs in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perovskite solar cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron mobility</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zinc oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bulk heterojunction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Tingwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huihui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jain, Sagar M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kaikai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Na</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hairui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:401</subfield><subfield code="g">year:2018</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:303-311</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2018.09.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">401</subfield><subfield code="j">2018</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">303-311</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
score |
7.401019 |