Video analytical coding: When video coding meets video analysis
Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of v...
Ausführliche Beschreibung
Autor*in: |
Liu, Yuyang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis - Zeng, C. ELSEVIER, 2014, theory, techniques & applications, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2018 ; pages:48-57 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.image.2018.05.012 |
---|
Katalog-ID: |
ELV04471503X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04471503X | ||
003 | DE-627 | ||
005 | 20230626005640.0 | ||
007 | cr uuu---uuuuu | ||
008 | 181123s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.image.2018.05.012 |2 doi | |
028 | 5 | 2 | |a GBV00000000000309_01.pica |
035 | |a (DE-627)ELV04471503X | ||
035 | |a (ELSEVIER)S0923-5965(18)30498-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 660 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Liu, Yuyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Video analytical coding: When video coding meets video analysis |
264 | 1 | |c 2018transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). | ||
520 | |a Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). | ||
650 | 7 | |a Video analysis |2 Elsevier | |
650 | 7 | |a Video analytical coding |2 Elsevier | |
650 | 7 | |a Analytical distortion |2 Elsevier | |
650 | 7 | |a Rate distortion optimization |2 Elsevier | |
700 | 1 | |a Zhu, Ce |4 oth | |
700 | 1 | |a Mao, Min |4 oth | |
700 | 1 | |a Song, Fangliang |4 oth | |
700 | 1 | |a Dufaux, Frederic |4 oth | |
700 | 1 | |a Zhang, Xiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Zeng, C. ELSEVIER |t Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |d 2014 |d theory, techniques & applications |g Amsterdam [u.a.] |w (DE-627)ELV017872103 |
773 | 1 | 8 | |g volume:67 |g year:2018 |g pages:48-57 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.image.2018.05.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 67 |j 2018 |h 48-57 |g 10 |
author_variant |
y l yl |
---|---|
matchkey_str |
liuyuyangzhucemaominsongfangliangdufauxf:2018----:ieaayiacdnwevdooige |
hierarchy_sort_str |
2018transfer abstract |
bklnumber |
52.56 |
publishDate |
2018 |
allfields |
10.1016/j.image.2018.05.012 doi GBV00000000000309_01.pica (DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 DE-627 ger DE-627 rakwb eng 610 VZ 660 620 VZ 52.56 bkl Liu, Yuyang verfasserin aut Video analytical coding: When video coding meets video analysis 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier Zhu, Ce oth Mao, Min oth Song, Fangliang oth Dufaux, Frederic oth Zhang, Xiang oth Enthalten in Elsevier Zeng, C. ELSEVIER Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis 2014 theory, techniques & applications Amsterdam [u.a.] (DE-627)ELV017872103 volume:67 year:2018 pages:48-57 extent:10 https://doi.org/10.1016/j.image.2018.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 52.56 Regenerative Energieformen alternative Energieformen VZ AR 67 2018 48-57 10 |
spelling |
10.1016/j.image.2018.05.012 doi GBV00000000000309_01.pica (DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 DE-627 ger DE-627 rakwb eng 610 VZ 660 620 VZ 52.56 bkl Liu, Yuyang verfasserin aut Video analytical coding: When video coding meets video analysis 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier Zhu, Ce oth Mao, Min oth Song, Fangliang oth Dufaux, Frederic oth Zhang, Xiang oth Enthalten in Elsevier Zeng, C. ELSEVIER Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis 2014 theory, techniques & applications Amsterdam [u.a.] (DE-627)ELV017872103 volume:67 year:2018 pages:48-57 extent:10 https://doi.org/10.1016/j.image.2018.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 52.56 Regenerative Energieformen alternative Energieformen VZ AR 67 2018 48-57 10 |
allfields_unstemmed |
10.1016/j.image.2018.05.012 doi GBV00000000000309_01.pica (DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 DE-627 ger DE-627 rakwb eng 610 VZ 660 620 VZ 52.56 bkl Liu, Yuyang verfasserin aut Video analytical coding: When video coding meets video analysis 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier Zhu, Ce oth Mao, Min oth Song, Fangliang oth Dufaux, Frederic oth Zhang, Xiang oth Enthalten in Elsevier Zeng, C. ELSEVIER Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis 2014 theory, techniques & applications Amsterdam [u.a.] (DE-627)ELV017872103 volume:67 year:2018 pages:48-57 extent:10 https://doi.org/10.1016/j.image.2018.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 52.56 Regenerative Energieformen alternative Energieformen VZ AR 67 2018 48-57 10 |
allfieldsGer |
10.1016/j.image.2018.05.012 doi GBV00000000000309_01.pica (DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 DE-627 ger DE-627 rakwb eng 610 VZ 660 620 VZ 52.56 bkl Liu, Yuyang verfasserin aut Video analytical coding: When video coding meets video analysis 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier Zhu, Ce oth Mao, Min oth Song, Fangliang oth Dufaux, Frederic oth Zhang, Xiang oth Enthalten in Elsevier Zeng, C. ELSEVIER Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis 2014 theory, techniques & applications Amsterdam [u.a.] (DE-627)ELV017872103 volume:67 year:2018 pages:48-57 extent:10 https://doi.org/10.1016/j.image.2018.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 52.56 Regenerative Energieformen alternative Energieformen VZ AR 67 2018 48-57 10 |
allfieldsSound |
10.1016/j.image.2018.05.012 doi GBV00000000000309_01.pica (DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 DE-627 ger DE-627 rakwb eng 610 VZ 660 620 VZ 52.56 bkl Liu, Yuyang verfasserin aut Video analytical coding: When video coding meets video analysis 2018transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier Zhu, Ce oth Mao, Min oth Song, Fangliang oth Dufaux, Frederic oth Zhang, Xiang oth Enthalten in Elsevier Zeng, C. ELSEVIER Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis 2014 theory, techniques & applications Amsterdam [u.a.] (DE-627)ELV017872103 volume:67 year:2018 pages:48-57 extent:10 https://doi.org/10.1016/j.image.2018.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 52.56 Regenerative Energieformen alternative Energieformen VZ AR 67 2018 48-57 10 |
language |
English |
source |
Enthalten in Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis Amsterdam [u.a.] volume:67 year:2018 pages:48-57 extent:10 |
sourceStr |
Enthalten in Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis Amsterdam [u.a.] volume:67 year:2018 pages:48-57 extent:10 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Video analysis Video analytical coding Analytical distortion Rate distortion optimization |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |
authorswithroles_txt_mv |
Liu, Yuyang @@aut@@ Zhu, Ce @@oth@@ Mao, Min @@oth@@ Song, Fangliang @@oth@@ Dufaux, Frederic @@oth@@ Zhang, Xiang @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV017872103 |
dewey-sort |
3610 |
id |
ELV04471503X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04471503X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626005640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181123s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.image.2018.05.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000309_01.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04471503X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0923-5965(18)30498-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Video analytical coding: When video coding meets video analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Video analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Video analytical coding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytical distortion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate distortion optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Ce</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Fangliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dufaux, Frederic</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zeng, C. ELSEVIER</subfield><subfield code="t">Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis</subfield><subfield code="d">2014</subfield><subfield code="d">theory, techniques & applications</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017872103</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:48-57</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.image.2018.05.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2018</subfield><subfield code="h">48-57</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Liu, Yuyang |
spellingShingle |
Liu, Yuyang ddc 610 ddc 660 bkl 52.56 Elsevier Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Video analytical coding: When video coding meets video analysis |
authorStr |
Liu, Yuyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017872103 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 660 620 VZ 52.56 bkl Video analytical coding: When video coding meets video analysis Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization Elsevier |
topic |
ddc 610 ddc 660 bkl 52.56 Elsevier Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization |
topic_unstemmed |
ddc 610 ddc 660 bkl 52.56 Elsevier Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization |
topic_browse |
ddc 610 ddc 660 bkl 52.56 Elsevier Video analysis Elsevier Video analytical coding Elsevier Analytical distortion Elsevier Rate distortion optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c z cz m m mm f s fs f d fd x z xz |
hierarchy_parent_title |
Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |
hierarchy_parent_id |
ELV017872103 |
dewey-tens |
610 - Medicine & health 660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017872103 |
title |
Video analytical coding: When video coding meets video analysis |
ctrlnum |
(DE-627)ELV04471503X (ELSEVIER)S0923-5965(18)30498-3 |
title_full |
Video analytical coding: When video coding meets video analysis |
author_sort |
Liu, Yuyang |
journal |
Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |
journalStr |
Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
48 |
author_browse |
Liu, Yuyang |
container_volume |
67 |
physical |
10 |
class |
610 VZ 660 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yuyang |
doi_str_mv |
10.1016/j.image.2018.05.012 |
dewey-full |
610 660 620 |
title_sort |
video analytical coding: when video coding meets video analysis |
title_auth |
Video analytical coding: When video coding meets video analysis |
abstract |
Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). |
abstractGer |
Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). |
abstract_unstemmed |
Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2015 |
title_short |
Video analytical coding: When video coding meets video analysis |
url |
https://doi.org/10.1016/j.image.2018.05.012 |
remote_bool |
true |
author2 |
Zhu, Ce Mao, Min Song, Fangliang Dufaux, Frederic Zhang, Xiang |
author2Str |
Zhu, Ce Mao, Min Song, Fangliang Dufaux, Frederic Zhang, Xiang |
ppnlink |
ELV017872103 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.image.2018.05.012 |
up_date |
2024-07-06T22:14:13.564Z |
_version_ |
1803869543270973440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04471503X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626005640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">181123s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.image.2018.05.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000309_01.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04471503X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0923-5965(18)30498-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Video analytical coding: When video coding meets video analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leveraging on the properties of human visual system, most of the well-designed video coding standards utilize rate–distortion optimization techniques by maximizing a fidelity cost function (e.g., peak signal noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data is consumed by computers rather than by human beings in several application scenarios. In view of this, this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. We use the term “analytical distortion” to denote the difference of video analysis performance when video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we develop a new rate–analytical-distortion optimization (RADO) method to trade off the bit rate and the analytical distortion. Specifically, we consider moving object detection as the analysis task and develop a rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video coding, where the analytical distortion is related to the object detection performance represented as F1-measure. Experimental results show that the performance of the video analysis task can be significantly improved (up to 40% reduction of analytical distortion).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Video analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Video analytical coding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytical distortion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate distortion optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Ce</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Fangliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dufaux, Frederic</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zeng, C. ELSEVIER</subfield><subfield code="t">Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis</subfield><subfield code="d">2014</subfield><subfield code="d">theory, techniques & applications</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017872103</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:48-57</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.image.2018.05.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2018</subfield><subfield code="h">48-57</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.401078 |