Strange messenger: A new history of hydrogen on Earth, as told by Xenon
Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to es...
Ausführliche Beschreibung
Autor*in: |
Zahnle, Kevin J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
30 |
---|
Übergeordnetes Werk: |
Enthalten in: 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis - Taylor, William R. ELSEVIER, 2014, journal of the Geochemical Society and the Meteoritical Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:244 ; year:2019 ; day:1 ; month:01 ; pages:56-85 ; extent:30 |
Links: |
---|
DOI / URN: |
10.1016/j.gca.2018.09.017 |
---|
Katalog-ID: |
ELV045015538 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045015538 | ||
003 | DE-627 | ||
005 | 20230626010232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 190205s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gca.2018.09.017 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica |
035 | |a (DE-627)ELV045015538 | ||
035 | |a (ELSEVIER)S0016-7037(18)30534-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
084 | |a 42.15 |2 bkl | ||
100 | 1 | |a Zahnle, Kevin J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
264 | 1 | |c 2019transfer abstract | |
300 | |a 30 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). | ||
520 | |a Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). | ||
650 | 7 | |a Noble gases |2 Elsevier | |
650 | 7 | |a Earth atmospheric evolution |2 Elsevier | |
650 | 7 | |a Great oxidation event |2 Elsevier | |
700 | 1 | |a Gacesa, Marko |4 oth | |
700 | 1 | |a Catling, David C. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Taylor, William R. ELSEVIER |t 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |d 2014 |d journal of the Geochemical Society and the Meteoritical Society |g New York, NY [u.a.] |w (DE-627)ELV012653268 |
773 | 1 | 8 | |g volume:244 |g year:2019 |g day:1 |g month:01 |g pages:56-85 |g extent:30 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gca.2018.09.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
936 | b | k | |a 42.15 |j Zellbiologie |q VZ |
951 | |a AR | ||
952 | |d 244 |j 2019 |b 1 |c 0101 |h 56-85 |g 30 |
author_variant |
k j z kj kjz |
---|---|
matchkey_str |
zahnlekevinjgacesamarkocatlingdavidc:2019----:tagmsegrnwitrohdoeoer |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
35.70 42.12 42.15 |
publishDate |
2019 |
allfields |
10.1016/j.gca.2018.09.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Zahnle, Kevin J. verfasserin aut Strange messenger: A new history of hydrogen on Earth, as told by Xenon 2019transfer abstract 30 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier Gacesa, Marko oth Catling, David C. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 https://doi.org/10.1016/j.gca.2018.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 244 2019 1 0101 56-85 30 |
spelling |
10.1016/j.gca.2018.09.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Zahnle, Kevin J. verfasserin aut Strange messenger: A new history of hydrogen on Earth, as told by Xenon 2019transfer abstract 30 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier Gacesa, Marko oth Catling, David C. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 https://doi.org/10.1016/j.gca.2018.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 244 2019 1 0101 56-85 30 |
allfields_unstemmed |
10.1016/j.gca.2018.09.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Zahnle, Kevin J. verfasserin aut Strange messenger: A new history of hydrogen on Earth, as told by Xenon 2019transfer abstract 30 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier Gacesa, Marko oth Catling, David C. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 https://doi.org/10.1016/j.gca.2018.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 244 2019 1 0101 56-85 30 |
allfieldsGer |
10.1016/j.gca.2018.09.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Zahnle, Kevin J. verfasserin aut Strange messenger: A new history of hydrogen on Earth, as told by Xenon 2019transfer abstract 30 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier Gacesa, Marko oth Catling, David C. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 https://doi.org/10.1016/j.gca.2018.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 244 2019 1 0101 56-85 30 |
allfieldsSound |
10.1016/j.gca.2018.09.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Zahnle, Kevin J. verfasserin aut Strange messenger: A new history of hydrogen on Earth, as told by Xenon 2019transfer abstract 30 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier Gacesa, Marko oth Catling, David C. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 https://doi.org/10.1016/j.gca.2018.09.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 244 2019 1 0101 56-85 30 |
language |
English |
source |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 |
sourceStr |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:244 year:2019 day:1 month:01 pages:56-85 extent:30 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik Zellbiologie |
institution |
findex.gbv.de |
topic_facet |
Noble gases Earth atmospheric evolution Great oxidation event |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
authorswithroles_txt_mv |
Zahnle, Kevin J. @@aut@@ Gacesa, Marko @@oth@@ Catling, David C. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV012653268 |
dewey-sort |
3610 |
id |
ELV045015538 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045015538</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2018.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045015538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(18)30534-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zahnle, Kevin J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strange messenger: A new history of hydrogen on Earth, as told by Xenon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noble gases</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Earth atmospheric evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Great oxidation event</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gacesa, Marko</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catling, David C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:244</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:56-85</subfield><subfield code="g">extent:30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2018.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">244</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">56-85</subfield><subfield code="g">30</subfield></datafield></record></collection>
|
author |
Zahnle, Kevin J. |
spellingShingle |
Zahnle, Kevin J. ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
authorStr |
Zahnle, Kevin J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012653268 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Strange messenger: A new history of hydrogen on Earth, as told by Xenon Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event Elsevier |
topic |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event |
topic_unstemmed |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event |
topic_browse |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Noble gases Elsevier Earth atmospheric evolution Elsevier Great oxidation event |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m g mg d c c dc dcc |
hierarchy_parent_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
hierarchy_parent_id |
ELV012653268 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012653268 |
title |
Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
ctrlnum |
(DE-627)ELV045015538 (ELSEVIER)S0016-7037(18)30534-9 |
title_full |
Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
author_sort |
Zahnle, Kevin J. |
journal |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
journalStr |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
56 |
author_browse |
Zahnle, Kevin J. |
container_volume |
244 |
physical |
30 |
class |
610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zahnle, Kevin J. |
doi_str_mv |
10.1016/j.gca.2018.09.017 |
dewey-full |
610 570 |
title_sort |
strange messenger: a new history of hydrogen on earth, as told by xenon |
title_auth |
Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
abstract |
Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). |
abstractGer |
Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). |
abstract_unstemmed |
Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Strange messenger: A new history of hydrogen on Earth, as told by Xenon |
url |
https://doi.org/10.1016/j.gca.2018.09.017 |
remote_bool |
true |
author2 |
Gacesa, Marko Catling, David C. |
author2Str |
Gacesa, Marko Catling, David C. |
ppnlink |
ELV012653268 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.gca.2018.09.017 |
up_date |
2024-07-06T23:00:48.370Z |
_version_ |
1803872473837469696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045015538</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2018.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045015538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(18)30534-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zahnle, Kevin J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strange messenger: A new history of hydrogen on Earth, as told by Xenon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric xenon is strongly mass fractionated, the result of a process that apparently continued through the Archean and perhaps beyond. Previous models that explain Xe fractionation by hydrodynamic hydrogen escape cannot gracefully explain how Xe escaped when Ar and Kr did not, nor allow Xe to escape in the Archean. Here we show that Xe is the only noble gas that can escape as an ion in a photo-ionized hydrogen wind, possible in the absence of a geomagnetic field or along polar magnetic field lines that open into interplanetary space. To quantify the hypothesis we construct new 1-D models of hydrodynamic diffusion-limited hydrogen escape from highly-irradiated CO2-H2-H atmospheres. The models reveal three minimum requirements for Xe escape: solar EUV irradiation needs to exceed 10 × that of the modern Sun; the total hydrogen mixing ratio in the atmosphere needs to exceed 1% (equiv. to 0.5 % CH4); and transport amongst the ions in the lower ionosphere needs to lift the Xe ions to the base of the outflowing hydrogen corona. The long duration of Xe escape implies that, if a constant process, Earth lost the hydrogen from at least one ocean of water, roughly evenly split between the Hadean and the Archean. However, to account for both Xe’s fractionation and also its depletion with respect to Kr and primordial 244Pu, Xe escape must have been limited to small apertures or short episodes, which suggests that Xe escape was restricted to polar windows by a geomagnetic field, or dominated by outbursts of high solar activity, or limited to transient episodes of abundant hydrogen, or a combination of these. Xenon escape stopped when the hydrogen (or methane) mixing ratio became too small, or EUV radiation from the aging Sun became too weak, or charge exchange between Xe+ and O2 rendered Xe neutral. In our model, Xe fractionation attests to an extended history of hydrogen escape and Earth oxidation preceding and ending with the Great Oxidation Event (GOE).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noble gases</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Earth atmospheric evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Great oxidation event</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gacesa, Marko</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catling, David C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:244</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:56-85</subfield><subfield code="g">extent:30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2018.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">244</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">56-85</subfield><subfield code="g">30</subfield></datafield></record></collection>
|
score |
7.401 |