Laser ablation positive-ion AMS of neutron activated actinides
At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measuremen...
Ausführliche Beschreibung
Autor*in: |
Pardo, R.C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Editorial Comment - Unwala, Darius J. ELSEVIER, 2013, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:438 ; year:2019 ; day:1 ; month:01 ; pages:172-179 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.nimb.2018.05.004 |
---|
Katalog-ID: |
ELV045091226 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045091226 | ||
003 | DE-627 | ||
005 | 20230626010459.0 | ||
007 | cr uuu---uuuuu | ||
008 | 190205s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nimb.2018.05.004 |2 doi | |
028 | 5 | 2 | |a GBV00000000000440.pica |
035 | |a (DE-627)ELV045091226 | ||
035 | |a (ELSEVIER)S0168-583X(18)30304-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Pardo, R.C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Laser ablation positive-ion AMS of neutron activated actinides |
264 | 1 | |c 2019transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. | ||
520 | |a At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. | ||
650 | 7 | |a Actinide |2 Elsevier | |
650 | 7 | |a Cross section |2 Elsevier | |
650 | 7 | |a AMS |2 Elsevier | |
650 | 7 | |a Neutron capture |2 Elsevier | |
650 | 7 | |a Laser ablation |2 Elsevier | |
700 | 1 | |a Palchan-Hazan, T. |4 oth | |
700 | 1 | |a Scott, R. |4 oth | |
700 | 1 | |a Paul, M. |4 oth | |
700 | 1 | |a Nusair, O. |4 oth | |
700 | 1 | |a Bauder, W. |4 oth | |
700 | 1 | |a Vondrasek, R. |4 oth | |
700 | 1 | |a Seweryniak, D. |4 oth | |
700 | 1 | |a Baker, S. |4 oth | |
700 | 1 | |a Talwar, R. |4 oth | |
700 | 1 | |a Collon, P. |4 oth | |
700 | 1 | |a Kondev, F.G. |4 oth | |
700 | 1 | |a Youinou, G. |4 oth | |
700 | 1 | |a Salvatores, M. |4 oth | |
700 | 1 | |a Palmiotti, G. |4 oth | |
700 | 1 | |a Berg, J. |4 oth | |
700 | 1 | |a Giglio, J. |4 oth | |
700 | 1 | |a Giglio, M.T. |4 oth | |
700 | 1 | |a Imel, G. |4 oth | |
700 | 1 | |a Nair, C. |4 oth | |
700 | 1 | |a Jiang, C.L. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Unwala, Darius J. ELSEVIER |t Editorial Comment |d 2013 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam [u.a.] |w (DE-627)ELV011304669 |
773 | 1 | 8 | |g volume:438 |g year:2019 |g day:1 |g month:01 |g pages:172-179 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nimb.2018.05.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 438 |j 2019 |b 1 |c 0101 |h 172-179 |g 8 |
author_variant |
r p rp |
---|---|
matchkey_str |
pardorcpalchanhazantscottrpaulmnusairoba:2019----:aealtopstvinmonurnc |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
44.85 |
publishDate |
2019 |
allfields |
10.1016/j.nimb.2018.05.004 doi GBV00000000000440.pica (DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.85 bkl Pardo, R.C. verfasserin aut Laser ablation positive-ion AMS of neutron activated actinides 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier Palchan-Hazan, T. oth Scott, R. oth Paul, M. oth Nusair, O. oth Bauder, W. oth Vondrasek, R. oth Seweryniak, D. oth Baker, S. oth Talwar, R. oth Collon, P. oth Kondev, F.G. oth Youinou, G. oth Salvatores, M. oth Palmiotti, G. oth Berg, J. oth Giglio, J. oth Giglio, M.T. oth Imel, G. oth Nair, C. oth Jiang, C.L. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 https://doi.org/10.1016/j.nimb.2018.05.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 438 2019 1 0101 172-179 8 |
spelling |
10.1016/j.nimb.2018.05.004 doi GBV00000000000440.pica (DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.85 bkl Pardo, R.C. verfasserin aut Laser ablation positive-ion AMS of neutron activated actinides 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier Palchan-Hazan, T. oth Scott, R. oth Paul, M. oth Nusair, O. oth Bauder, W. oth Vondrasek, R. oth Seweryniak, D. oth Baker, S. oth Talwar, R. oth Collon, P. oth Kondev, F.G. oth Youinou, G. oth Salvatores, M. oth Palmiotti, G. oth Berg, J. oth Giglio, J. oth Giglio, M.T. oth Imel, G. oth Nair, C. oth Jiang, C.L. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 https://doi.org/10.1016/j.nimb.2018.05.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 438 2019 1 0101 172-179 8 |
allfields_unstemmed |
10.1016/j.nimb.2018.05.004 doi GBV00000000000440.pica (DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.85 bkl Pardo, R.C. verfasserin aut Laser ablation positive-ion AMS of neutron activated actinides 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier Palchan-Hazan, T. oth Scott, R. oth Paul, M. oth Nusair, O. oth Bauder, W. oth Vondrasek, R. oth Seweryniak, D. oth Baker, S. oth Talwar, R. oth Collon, P. oth Kondev, F.G. oth Youinou, G. oth Salvatores, M. oth Palmiotti, G. oth Berg, J. oth Giglio, J. oth Giglio, M.T. oth Imel, G. oth Nair, C. oth Jiang, C.L. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 https://doi.org/10.1016/j.nimb.2018.05.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 438 2019 1 0101 172-179 8 |
allfieldsGer |
10.1016/j.nimb.2018.05.004 doi GBV00000000000440.pica (DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.85 bkl Pardo, R.C. verfasserin aut Laser ablation positive-ion AMS of neutron activated actinides 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier Palchan-Hazan, T. oth Scott, R. oth Paul, M. oth Nusair, O. oth Bauder, W. oth Vondrasek, R. oth Seweryniak, D. oth Baker, S. oth Talwar, R. oth Collon, P. oth Kondev, F.G. oth Youinou, G. oth Salvatores, M. oth Palmiotti, G. oth Berg, J. oth Giglio, J. oth Giglio, M.T. oth Imel, G. oth Nair, C. oth Jiang, C.L. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 https://doi.org/10.1016/j.nimb.2018.05.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 438 2019 1 0101 172-179 8 |
allfieldsSound |
10.1016/j.nimb.2018.05.004 doi GBV00000000000440.pica (DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.85 bkl Pardo, R.C. verfasserin aut Laser ablation positive-ion AMS of neutron activated actinides 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier Palchan-Hazan, T. oth Scott, R. oth Paul, M. oth Nusair, O. oth Bauder, W. oth Vondrasek, R. oth Seweryniak, D. oth Baker, S. oth Talwar, R. oth Collon, P. oth Kondev, F.G. oth Youinou, G. oth Salvatores, M. oth Palmiotti, G. oth Berg, J. oth Giglio, J. oth Giglio, M.T. oth Imel, G. oth Nair, C. oth Jiang, C.L. oth Enthalten in Elsevier Unwala, Darius J. ELSEVIER Editorial Comment 2013 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam [u.a.] (DE-627)ELV011304669 volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 https://doi.org/10.1016/j.nimb.2018.05.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 44.85 Kardiologie Angiologie VZ AR 438 2019 1 0101 172-179 8 |
language |
English |
source |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 |
sourceStr |
Enthalten in Editorial Comment Amsterdam [u.a.] volume:438 year:2019 day:1 month:01 pages:172-179 extent:8 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Actinide Cross section AMS Neutron capture Laser ablation |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Editorial Comment |
authorswithroles_txt_mv |
Pardo, R.C. @@aut@@ Palchan-Hazan, T. @@oth@@ Scott, R. @@oth@@ Paul, M. @@oth@@ Nusair, O. @@oth@@ Bauder, W. @@oth@@ Vondrasek, R. @@oth@@ Seweryniak, D. @@oth@@ Baker, S. @@oth@@ Talwar, R. @@oth@@ Collon, P. @@oth@@ Kondev, F.G. @@oth@@ Youinou, G. @@oth@@ Salvatores, M. @@oth@@ Palmiotti, G. @@oth@@ Berg, J. @@oth@@ Giglio, J. @@oth@@ Giglio, M.T. @@oth@@ Imel, G. @@oth@@ Nair, C. @@oth@@ Jiang, C.L. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV011304669 |
dewey-sort |
3610 |
id |
ELV045091226 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045091226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2018.05.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000440.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045091226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(18)30304-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, R.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser ablation positive-ion AMS of neutron activated actinides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Actinide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cross section</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron capture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laser ablation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palchan-Hazan, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scott, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paul, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nusair, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bauder, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vondrasek, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seweryniak, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Talwar, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collon, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kondev, F.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Youinou, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salvatores, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmiotti, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berg, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giglio, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giglio, M.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imel, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nair, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, C.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:172-179</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2018.05.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">172-179</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Pardo, R.C. |
spellingShingle |
Pardo, R.C. ddc 610 bkl 44.85 Elsevier Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Laser ablation positive-ion AMS of neutron activated actinides |
authorStr |
Pardo, R.C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011304669 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.85 bkl Laser ablation positive-ion AMS of neutron activated actinides Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation Elsevier |
topic |
ddc 610 bkl 44.85 Elsevier Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation |
topic_unstemmed |
ddc 610 bkl 44.85 Elsevier Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation |
topic_browse |
ddc 610 bkl 44.85 Elsevier Actinide Elsevier Cross section Elsevier AMS Elsevier Neutron capture Elsevier Laser ablation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t p h tph r s rs m p mp o n on w b wb r v rv d s ds s b sb r t rt p c pc f k fk g y gy m s ms g p gp j b jb j g jg m g mg g i gi c n cn c j cj |
hierarchy_parent_title |
Editorial Comment |
hierarchy_parent_id |
ELV011304669 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Editorial Comment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011304669 |
title |
Laser ablation positive-ion AMS of neutron activated actinides |
ctrlnum |
(DE-627)ELV045091226 (ELSEVIER)S0168-583X(18)30304-5 |
title_full |
Laser ablation positive-ion AMS of neutron activated actinides |
author_sort |
Pardo, R.C. |
journal |
Editorial Comment |
journalStr |
Editorial Comment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
172 |
author_browse |
Pardo, R.C. |
container_volume |
438 |
physical |
8 |
class |
610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pardo, R.C. |
doi_str_mv |
10.1016/j.nimb.2018.05.004 |
dewey-full |
610 |
title_sort |
laser ablation positive-ion ams of neutron activated actinides |
title_auth |
Laser ablation positive-ion AMS of neutron activated actinides |
abstract |
At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. |
abstractGer |
At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. |
abstract_unstemmed |
At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 |
title_short |
Laser ablation positive-ion AMS of neutron activated actinides |
url |
https://doi.org/10.1016/j.nimb.2018.05.004 |
remote_bool |
true |
author2 |
Palchan-Hazan, T. Scott, R. Paul, M. Nusair, O. Bauder, W. Vondrasek, R. Seweryniak, D. Baker, S. Talwar, R. Collon, P. Kondev, F.G. Youinou, G. Salvatores, M. Palmiotti, G. Berg, J. Giglio, J. Giglio, M.T. Imel, G. Nair, C. Jiang, C.L. |
author2Str |
Palchan-Hazan, T. Scott, R. Paul, M. Nusair, O. Bauder, W. Vondrasek, R. Seweryniak, D. Baker, S. Talwar, R. Collon, P. Kondev, F.G. Youinou, G. Salvatores, M. Palmiotti, G. Berg, J. Giglio, J. Giglio, M.T. Imel, G. Nair, C. Jiang, C.L. |
ppnlink |
ELV011304669 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nimb.2018.05.004 |
up_date |
2024-07-06T16:35:10.368Z |
_version_ |
1803848211888078848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045091226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2018.05.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000440.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045091226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(18)30304-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, R.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser ablation positive-ion AMS of neutron activated actinides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At Argonne we have enhanced the AMS capabilities of the Argonne Tandem Linac Accelerator System (ATLAS) to attempt to minimize crosstalk between samples and to quickly move from one (M/Q) setting to another in order to make measurements on a large number of samples provided by the MANTRA (Measurement of Actinide Neutron Transmutation Rates by Accelerator mass spectrometry) project. Those improvements include the use of a picosecond laser to ablate actinide material into the source, a new 20-sample holder that can switch samples within 1–2 min, and a number of accelerator configuration improvements that allow quick and precise switching between species. In principle, AMS can provide production yields of actinide isotopes produced during the irradiation period at a sensitivity exceeding other mass spectrometry techniques. A total of 27 irradiated samples of a variety of actinides have been provided for measurement. We discuss our experience with these facility improvements and how well we have met our performance goals. In addition, we present preliminary results on a number of the irradiated actinide samples with this approach and compare those results to Multi-Collector ICPMS measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Actinide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cross section</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron capture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laser ablation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palchan-Hazan, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scott, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paul, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nusair, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bauder, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vondrasek, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seweryniak, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Talwar, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collon, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kondev, F.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Youinou, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salvatores, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmiotti, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berg, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giglio, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giglio, M.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imel, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nair, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, C.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Unwala, Darius J. ELSEVIER</subfield><subfield code="t">Editorial Comment</subfield><subfield code="d">2013</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011304669</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:172-179</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nimb.2018.05.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">172-179</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4008503 |