Bidirectional selection for high and low stress-induced analgesia affects G-protein activity
Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. Howe...
Ausführliche Beschreibung
Autor*in: |
Poznański, Piotr [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes - March, Brayden ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:144 ; year:2019 ; pages:37-42 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.neuropharm.2018.10.014 |
---|
Katalog-ID: |
ELV045123020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045123020 | ||
003 | DE-627 | ||
005 | 20230626010553.0 | ||
007 | cr uuu---uuuuu | ||
008 | 190205s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuropharm.2018.10.014 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica |
035 | |a (DE-627)ELV045123020 | ||
035 | |a (ELSEVIER)S0028-3908(18)30798-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.88 |2 bkl | ||
100 | 1 | |a Poznański, Piotr |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
264 | 1 | |c 2019transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. | ||
520 | |a Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. | ||
650 | 7 | |a HA and LA mice |2 Elsevier | |
650 | 7 | |a G-protein activation |2 Elsevier | |
650 | 7 | |a Antinociception |2 Elsevier | |
650 | 7 | |a Opioid system |2 Elsevier | |
700 | 1 | |a Lesniak, Anna |4 oth | |
700 | 1 | |a Bujalska-Zadrozny, Magdalena |4 oth | |
700 | 1 | |a Strzemecka, Joanna |4 oth | |
700 | 1 | |a Sacharczuk, Mariusz |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a March, Brayden ELSEVIER |t Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009446303 |
773 | 1 | 8 | |g volume:144 |g year:2019 |g pages:37-42 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuropharm.2018.10.014 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.88 |j Urologie |j Nephrologie |q VZ |
951 | |a AR | ||
952 | |d 144 |j 2019 |h 37-42 |g 6 |
author_variant |
p p pp |
---|---|
matchkey_str |
poznaskipiotrlesniakannabujalskazadrozny:2019----:iietoaslcinohgadosrsidcdnleiaf |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
44.88 |
publishDate |
2019 |
allfields |
10.1016/j.neuropharm.2018.10.014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica (DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.88 bkl Poznański, Piotr verfasserin aut Bidirectional selection for high and low stress-induced analgesia affects G-protein activity 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier Lesniak, Anna oth Bujalska-Zadrozny, Magdalena oth Strzemecka, Joanna oth Sacharczuk, Mariusz oth Enthalten in Elsevier Science March, Brayden ELSEVIER Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes 2023 Amsterdam [u.a.] (DE-627)ELV009446303 volume:144 year:2019 pages:37-42 extent:6 https://doi.org/10.1016/j.neuropharm.2018.10.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.88 Urologie Nephrologie VZ AR 144 2019 37-42 6 |
spelling |
10.1016/j.neuropharm.2018.10.014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica (DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.88 bkl Poznański, Piotr verfasserin aut Bidirectional selection for high and low stress-induced analgesia affects G-protein activity 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier Lesniak, Anna oth Bujalska-Zadrozny, Magdalena oth Strzemecka, Joanna oth Sacharczuk, Mariusz oth Enthalten in Elsevier Science March, Brayden ELSEVIER Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes 2023 Amsterdam [u.a.] (DE-627)ELV009446303 volume:144 year:2019 pages:37-42 extent:6 https://doi.org/10.1016/j.neuropharm.2018.10.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.88 Urologie Nephrologie VZ AR 144 2019 37-42 6 |
allfields_unstemmed |
10.1016/j.neuropharm.2018.10.014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica (DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.88 bkl Poznański, Piotr verfasserin aut Bidirectional selection for high and low stress-induced analgesia affects G-protein activity 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier Lesniak, Anna oth Bujalska-Zadrozny, Magdalena oth Strzemecka, Joanna oth Sacharczuk, Mariusz oth Enthalten in Elsevier Science March, Brayden ELSEVIER Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes 2023 Amsterdam [u.a.] (DE-627)ELV009446303 volume:144 year:2019 pages:37-42 extent:6 https://doi.org/10.1016/j.neuropharm.2018.10.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.88 Urologie Nephrologie VZ AR 144 2019 37-42 6 |
allfieldsGer |
10.1016/j.neuropharm.2018.10.014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica (DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.88 bkl Poznański, Piotr verfasserin aut Bidirectional selection for high and low stress-induced analgesia affects G-protein activity 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier Lesniak, Anna oth Bujalska-Zadrozny, Magdalena oth Strzemecka, Joanna oth Sacharczuk, Mariusz oth Enthalten in Elsevier Science March, Brayden ELSEVIER Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes 2023 Amsterdam [u.a.] (DE-627)ELV009446303 volume:144 year:2019 pages:37-42 extent:6 https://doi.org/10.1016/j.neuropharm.2018.10.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.88 Urologie Nephrologie VZ AR 144 2019 37-42 6 |
allfieldsSound |
10.1016/j.neuropharm.2018.10.014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica (DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.88 bkl Poznański, Piotr verfasserin aut Bidirectional selection for high and low stress-induced analgesia affects G-protein activity 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier Lesniak, Anna oth Bujalska-Zadrozny, Magdalena oth Strzemecka, Joanna oth Sacharczuk, Mariusz oth Enthalten in Elsevier Science March, Brayden ELSEVIER Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes 2023 Amsterdam [u.a.] (DE-627)ELV009446303 volume:144 year:2019 pages:37-42 extent:6 https://doi.org/10.1016/j.neuropharm.2018.10.014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.88 Urologie Nephrologie VZ AR 144 2019 37-42 6 |
language |
English |
source |
Enthalten in Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes Amsterdam [u.a.] volume:144 year:2019 pages:37-42 extent:6 |
sourceStr |
Enthalten in Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes Amsterdam [u.a.] volume:144 year:2019 pages:37-42 extent:6 |
format_phy_str_mv |
Article |
bklname |
Urologie Nephrologie |
institution |
findex.gbv.de |
topic_facet |
HA and LA mice G-protein activation Antinociception Opioid system |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |
authorswithroles_txt_mv |
Poznański, Piotr @@aut@@ Lesniak, Anna @@oth@@ Bujalska-Zadrozny, Magdalena @@oth@@ Strzemecka, Joanna @@oth@@ Sacharczuk, Mariusz @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV009446303 |
dewey-sort |
3610 |
id |
ELV045123020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045123020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuropharm.2018.10.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045123020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0028-3908(18)30798-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.88</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poznański, Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bidirectional selection for high and low stress-induced analgesia affects G-protein activity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HA and LA mice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G-protein activation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Antinociception</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opioid system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesniak, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bujalska-Zadrozny, Magdalena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strzemecka, Joanna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sacharczuk, Mariusz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">March, Brayden ELSEVIER</subfield><subfield code="t">Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009446303</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:144</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:37-42</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuropharm.2018.10.014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.88</subfield><subfield code="j">Urologie</subfield><subfield code="j">Nephrologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">144</subfield><subfield code="j">2019</subfield><subfield code="h">37-42</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
author |
Poznański, Piotr |
spellingShingle |
Poznański, Piotr ddc 610 bkl 44.88 Elsevier HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
authorStr |
Poznański, Piotr |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009446303 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.88 bkl Bidirectional selection for high and low stress-induced analgesia affects G-protein activity HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system Elsevier |
topic |
ddc 610 bkl 44.88 Elsevier HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system |
topic_unstemmed |
ddc 610 bkl 44.88 Elsevier HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system |
topic_browse |
ddc 610 bkl 44.88 Elsevier HA and LA mice Elsevier G-protein activation Elsevier Antinociception Elsevier Opioid system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a l al m b z mbz j s js m s ms |
hierarchy_parent_title |
Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |
hierarchy_parent_id |
ELV009446303 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009446303 |
title |
Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
ctrlnum |
(DE-627)ELV045123020 (ELSEVIER)S0028-3908(18)30798-6 |
title_full |
Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
author_sort |
Poznański, Piotr |
journal |
Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |
journalStr |
Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
37 |
author_browse |
Poznański, Piotr |
container_volume |
144 |
physical |
6 |
class |
610 VZ 44.88 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Poznański, Piotr |
doi_str_mv |
10.1016/j.neuropharm.2018.10.014 |
dewey-full |
610 |
title_sort |
bidirectional selection for high and low stress-induced analgesia affects g-protein activity |
title_auth |
Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
abstract |
Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. |
abstractGer |
Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. |
abstract_unstemmed |
Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Bidirectional selection for high and low stress-induced analgesia affects G-protein activity |
url |
https://doi.org/10.1016/j.neuropharm.2018.10.014 |
remote_bool |
true |
author2 |
Lesniak, Anna Bujalska-Zadrozny, Magdalena Strzemecka, Joanna Sacharczuk, Mariusz |
author2Str |
Lesniak, Anna Bujalska-Zadrozny, Magdalena Strzemecka, Joanna Sacharczuk, Mariusz |
ppnlink |
ELV009446303 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.neuropharm.2018.10.014 |
up_date |
2024-07-06T16:40:00.697Z |
_version_ |
1803848516319051776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045123020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626010553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuropharm.2018.10.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001257.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045123020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0028-3908(18)30798-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.88</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poznański, Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bidirectional selection for high and low stress-induced analgesia affects G-protein activity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3–249 μmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated β - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HA and LA mice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G-protein activation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Antinociception</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opioid system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesniak, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bujalska-Zadrozny, Magdalena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strzemecka, Joanna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sacharczuk, Mariusz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">March, Brayden ELSEVIER</subfield><subfield code="t">Phallus Preservation for Locally Advanced Proximal Primary Urethral Carcinoma: Technique and Outcomes</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009446303</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:144</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:37-42</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuropharm.2018.10.014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.88</subfield><subfield code="j">Urologie</subfield><subfield code="j">Nephrologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">144</subfield><subfield code="j">2019</subfield><subfield code="h">37-42</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.399678 |