The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession
• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential...
Ausführliche Beschreibung
Autor*in: |
Kortesniemi, Mika [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study - Almanassra, Ismail W. ELSEVIER, 2019, European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2018 ; pages:90-93 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.ejmp.2018.11.005 |
---|
Katalog-ID: |
ELV045152179 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045152179 | ||
003 | DE-627 | ||
005 | 20230624113816.0 | ||
007 | cr uuu---uuuuu | ||
008 | 190205s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejmp.2018.11.005 |2 doi | |
028 | 5 | 2 | |a GBV00000000000448.pica |
035 | |a (DE-627)ELV045152179 | ||
035 | |a (ELSEVIER)S1120-1797(18)31315-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.21 |2 bkl | ||
100 | 1 | |a Kortesniemi, Mika |e verfasserin |4 aut | |
245 | 1 | 4 | |a The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
264 | 1 | |c 2018 | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. | ||
700 | 1 | |a Tsapaki, Virginia |4 oth | |
700 | 1 | |a Trianni, Annalisa |4 oth | |
700 | 1 | |a Russo, Paolo |4 oth | |
700 | 1 | |a Maas, Ad |4 oth | |
700 | 1 | |a Källman, Hans-Erik |4 oth | |
700 | 1 | |a Brambilla, Marco |4 oth | |
700 | 1 | |a Damilakis, John |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Almanassra, Ismail W. ELSEVIER |t An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |d 2019 |d European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology |g Amsterdam |w (DE-627)ELV003857336 |
773 | 1 | 8 | |g volume:56 |g year:2018 |g pages:90-93 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ejmp.2018.11.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.21 |j Lösungen |j Flüssigkeiten |x Physikalische Chemie |q VZ |
951 | |a AR | ||
952 | |d 56 |j 2018 |h 90-93 |g 4 |
author_variant |
m k mk |
---|---|
matchkey_str |
kortesniemimikatsapakivirginiatrianniann:2018----:herpafdrtooognstosomdclhsceophtppridtadeperigneiaiaign |
hierarchy_sort_str |
2018 |
bklnumber |
35.21 |
publishDate |
2018 |
allfields |
10.1016/j.ejmp.2018.11.005 doi GBV00000000000448.pica (DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Kortesniemi, Mika verfasserin aut The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession 2018 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. Tsapaki, Virginia oth Trianni, Annalisa oth Russo, Paolo oth Maas, Ad oth Källman, Hans-Erik oth Brambilla, Marco oth Damilakis, John oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:56 year:2018 pages:90-93 extent:4 https://doi.org/10.1016/j.ejmp.2018.11.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 56 2018 90-93 4 |
spelling |
10.1016/j.ejmp.2018.11.005 doi GBV00000000000448.pica (DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Kortesniemi, Mika verfasserin aut The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession 2018 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. Tsapaki, Virginia oth Trianni, Annalisa oth Russo, Paolo oth Maas, Ad oth Källman, Hans-Erik oth Brambilla, Marco oth Damilakis, John oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:56 year:2018 pages:90-93 extent:4 https://doi.org/10.1016/j.ejmp.2018.11.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 56 2018 90-93 4 |
allfields_unstemmed |
10.1016/j.ejmp.2018.11.005 doi GBV00000000000448.pica (DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Kortesniemi, Mika verfasserin aut The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession 2018 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. Tsapaki, Virginia oth Trianni, Annalisa oth Russo, Paolo oth Maas, Ad oth Källman, Hans-Erik oth Brambilla, Marco oth Damilakis, John oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:56 year:2018 pages:90-93 extent:4 https://doi.org/10.1016/j.ejmp.2018.11.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 56 2018 90-93 4 |
allfieldsGer |
10.1016/j.ejmp.2018.11.005 doi GBV00000000000448.pica (DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Kortesniemi, Mika verfasserin aut The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession 2018 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. Tsapaki, Virginia oth Trianni, Annalisa oth Russo, Paolo oth Maas, Ad oth Källman, Hans-Erik oth Brambilla, Marco oth Damilakis, John oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:56 year:2018 pages:90-93 extent:4 https://doi.org/10.1016/j.ejmp.2018.11.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 56 2018 90-93 4 |
allfieldsSound |
10.1016/j.ejmp.2018.11.005 doi GBV00000000000448.pica (DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Kortesniemi, Mika verfasserin aut The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession 2018 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. Tsapaki, Virginia oth Trianni, Annalisa oth Russo, Paolo oth Maas, Ad oth Källman, Hans-Erik oth Brambilla, Marco oth Damilakis, John oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:56 year:2018 pages:90-93 extent:4 https://doi.org/10.1016/j.ejmp.2018.11.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 56 2018 90-93 4 |
language |
English |
source |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:56 year:2018 pages:90-93 extent:4 |
sourceStr |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:56 year:2018 pages:90-93 extent:4 |
format_phy_str_mv |
Article |
bklname |
Lösungen Flüssigkeiten |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
authorswithroles_txt_mv |
Kortesniemi, Mika @@aut@@ Tsapaki, Virginia @@oth@@ Trianni, Annalisa @@oth@@ Russo, Paolo @@oth@@ Maas, Ad @@oth@@ Källman, Hans-Erik @@oth@@ Brambilla, Marco @@oth@@ Damilakis, John @@oth@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
ELV003857336 |
dewey-sort |
3540 |
id |
ELV045152179 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045152179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624113816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2018.11.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000448.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045152179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(18)31315-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kortesniemi, Mika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsapaki, Virginia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trianni, Annalisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paolo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maas, Ad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Källman, Hans-Erik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brambilla, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Damilakis, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:90-93</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2018.11.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2018</subfield><subfield code="h">90-93</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
author |
Kortesniemi, Mika |
spellingShingle |
Kortesniemi, Mika ddc 540 bkl 35.21 The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
authorStr |
Kortesniemi, Mika |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003857336 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.21 bkl The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
topic |
ddc 540 bkl 35.21 |
topic_unstemmed |
ddc 540 bkl 35.21 |
topic_browse |
ddc 540 bkl 35.21 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v t vt a t at p r pr a m am h e k hek m b mb j d jd |
hierarchy_parent_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
hierarchy_parent_id |
ELV003857336 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003857336 |
title |
The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
ctrlnum |
(DE-627)ELV045152179 (ELSEVIER)S1120-1797(18)31315-2 |
title_full |
The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
author_sort |
Kortesniemi, Mika |
journal |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
journalStr |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
90 |
author_browse |
Kortesniemi, Mika |
container_volume |
56 |
physical |
4 |
class |
540 VZ 35.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kortesniemi, Mika |
doi_str_mv |
10.1016/j.ejmp.2018.11.005 |
dewey-full |
540 |
title_sort |
european federation of organisations for medical physics (efomp) white paper: big data and deep learning in medical imaging and in relation to medical physics profession |
title_auth |
The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
abstract |
• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. |
abstractGer |
• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. |
abstract_unstemmed |
• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession |
url |
https://doi.org/10.1016/j.ejmp.2018.11.005 |
remote_bool |
true |
author2 |
Tsapaki, Virginia Trianni, Annalisa Russo, Paolo Maas, Ad Källman, Hans-Erik Brambilla, Marco Damilakis, John |
author2Str |
Tsapaki, Virginia Trianni, Annalisa Russo, Paolo Maas, Ad Källman, Hans-Erik Brambilla, Marco Damilakis, John |
ppnlink |
ELV003857336 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ejmp.2018.11.005 |
up_date |
2024-07-06T16:45:14.988Z |
_version_ |
1803848845877051392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045152179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624113816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2018.11.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000448.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045152179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(18)31315-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kortesniemi, Mika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Artificial intelligence is profoundly changing professions, applications and research. • Emerging AI methods may enable more comprehensive optimisation, dosimetry and QA. • Challenges in data utilisation involve access, privacy, labeling and validation. • Technological transform has also potential impact on our multidisciplinary role. • Our professional role and education should keep up with the development of AI methods.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsapaki, Virginia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trianni, Annalisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paolo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maas, Ad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Källman, Hans-Erik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brambilla, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Damilakis, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:90-93</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2018.11.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2018</subfield><subfield code="h">90-93</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
score |
7.400923 |