Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test
In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size...
Ausführliche Beschreibung
Autor*in: |
Rao, Xiaoshuang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) - Cutts, Joshua ELSEVIER, 2021, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:744 ; year:2019 ; day:28 ; month:01 ; pages:426-435 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.msea.2018.12.044 |
---|
Katalog-ID: |
ELV045482284 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045482284 | ||
003 | DE-627 | ||
005 | 20230626011537.0 | ||
007 | cr uuu---uuuuu | ||
008 | 190205s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.msea.2018.12.044 |2 doi | |
028 | 5 | 2 | |a GBV00000000000492.pica |
035 | |a (DE-627)ELV045482284 | ||
035 | |a (ELSEVIER)S0921-5093(18)31722-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
100 | 1 | |a Rao, Xiaoshuang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
264 | 1 | |c 2019transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. | ||
520 | |a In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. | ||
650 | 7 | |a Elastic modulus |2 Elsevier | |
650 | 7 | |a Vickers hardness |2 Elsevier | |
650 | 7 | |a Elevated temperature |2 Elsevier | |
650 | 7 | |a RB-SiC ceramics |2 Elsevier | |
650 | 7 | |a Fracture toughness |2 Elsevier | |
700 | 1 | |a Zhang, Feihu |4 oth | |
700 | 1 | |a Luo, Xichun |4 oth | |
700 | 1 | |a Ding, Fei |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Cutts, Joshua ELSEVIER |t Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |d 2021 |g Amsterdam |w (DE-627)ELV007117167 |
773 | 1 | 8 | |g volume:744 |g year:2019 |g day:28 |g month:01 |g pages:426-435 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.msea.2018.12.044 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 744 |j 2019 |b 28 |c 0128 |h 426-435 |g 10 |
author_variant |
x r xr |
---|---|
matchkey_str |
raoxiaoshuangzhangfeihuluoxichundingfei:2019----:hrceiainfadeslsimdlsnfatrtuhesfbicrmcaee |
hierarchy_sort_str |
2019transfer abstract |
publishDate |
2019 |
allfields |
10.1016/j.msea.2018.12.044 doi GBV00000000000492.pica (DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 DE-627 ger DE-627 rakwb eng 570 VZ Rao, Xiaoshuang verfasserin aut Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier Zhang, Feihu oth Luo, Xichun oth Ding, Fei oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 https://doi.org/10.1016/j.msea.2018.12.044 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 744 2019 28 0128 426-435 10 |
spelling |
10.1016/j.msea.2018.12.044 doi GBV00000000000492.pica (DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 DE-627 ger DE-627 rakwb eng 570 VZ Rao, Xiaoshuang verfasserin aut Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier Zhang, Feihu oth Luo, Xichun oth Ding, Fei oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 https://doi.org/10.1016/j.msea.2018.12.044 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 744 2019 28 0128 426-435 10 |
allfields_unstemmed |
10.1016/j.msea.2018.12.044 doi GBV00000000000492.pica (DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 DE-627 ger DE-627 rakwb eng 570 VZ Rao, Xiaoshuang verfasserin aut Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier Zhang, Feihu oth Luo, Xichun oth Ding, Fei oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 https://doi.org/10.1016/j.msea.2018.12.044 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 744 2019 28 0128 426-435 10 |
allfieldsGer |
10.1016/j.msea.2018.12.044 doi GBV00000000000492.pica (DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 DE-627 ger DE-627 rakwb eng 570 VZ Rao, Xiaoshuang verfasserin aut Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier Zhang, Feihu oth Luo, Xichun oth Ding, Fei oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 https://doi.org/10.1016/j.msea.2018.12.044 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 744 2019 28 0128 426-435 10 |
allfieldsSound |
10.1016/j.msea.2018.12.044 doi GBV00000000000492.pica (DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 DE-627 ger DE-627 rakwb eng 570 VZ Rao, Xiaoshuang verfasserin aut Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier Zhang, Feihu oth Luo, Xichun oth Ding, Fei oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 https://doi.org/10.1016/j.msea.2018.12.044 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 744 2019 28 0128 426-435 10 |
language |
English |
source |
Enthalten in Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) Amsterdam volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 |
sourceStr |
Enthalten in Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) Amsterdam volume:744 year:2019 day:28 month:01 pages:426-435 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Elastic modulus Vickers hardness Elevated temperature RB-SiC ceramics Fracture toughness |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
authorswithroles_txt_mv |
Rao, Xiaoshuang @@aut@@ Zhang, Feihu @@oth@@ Luo, Xichun @@oth@@ Ding, Fei @@oth@@ |
publishDateDaySort_date |
2019-01-28T00:00:00Z |
hierarchy_top_id |
ELV007117167 |
dewey-sort |
3570 |
id |
ELV045482284 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045482284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626011537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2018.12.044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000492.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045482284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(18)31722-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, Xiaoshuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic modulus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vickers hardness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elevated temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RB-SiC ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture toughness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Feihu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Xichun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cutts, Joshua ELSEVIER</subfield><subfield code="t">Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2)</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV007117167</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:744</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:28</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:426-435</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msea.2018.12.044</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">744</subfield><subfield code="j">2019</subfield><subfield code="b">28</subfield><subfield code="c">0128</subfield><subfield code="h">426-435</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Rao, Xiaoshuang |
spellingShingle |
Rao, Xiaoshuang ddc 570 Elsevier Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
authorStr |
Rao, Xiaoshuang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007117167 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness Elsevier |
topic |
ddc 570 Elsevier Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness |
topic_unstemmed |
ddc 570 Elsevier Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness |
topic_browse |
ddc 570 Elsevier Elastic modulus Elsevier Vickers hardness Elsevier Elevated temperature Elsevier RB-SiC ceramics Elsevier Fracture toughness |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f z fz x l xl f d fd |
hierarchy_parent_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
hierarchy_parent_id |
ELV007117167 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007117167 |
title |
Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
ctrlnum |
(DE-627)ELV045482284 (ELSEVIER)S0921-5093(18)31722-2 |
title_full |
Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
author_sort |
Rao, Xiaoshuang |
journal |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
journalStr |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
426 |
author_browse |
Rao, Xiaoshuang |
container_volume |
744 |
physical |
10 |
class |
570 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Rao, Xiaoshuang |
doi_str_mv |
10.1016/j.msea.2018.12.044 |
dewey-full |
570 |
title_sort |
characterization of hardness, elastic modulus and fracture toughness of rb-sic ceramics at elevated temperature by vickers test |
title_auth |
Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
abstract |
In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. |
abstractGer |
In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. |
abstract_unstemmed |
In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test |
url |
https://doi.org/10.1016/j.msea.2018.12.044 |
remote_bool |
true |
author2 |
Zhang, Feihu Luo, Xichun Ding, Fei |
author2Str |
Zhang, Feihu Luo, Xichun Ding, Fei |
ppnlink |
ELV007117167 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.msea.2018.12.044 |
up_date |
2024-07-06T17:39:44.135Z |
_version_ |
1803852273825087488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045482284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626011537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">190205s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2018.12.044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000492.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045482284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(18)31722-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, Xiaoshuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, mechanical properties of RB-SiC ceramics, such as hardness, elastic modulus and fracture toughness, are characterized through indentation technique using a Vickers indenter at elevated temperatures ranging from room temperature to1200 °C realized by laser heating. The indentation size effect, load-displacement curves and relationship between crack length and applied load are studied in order to determine hardness, elastic modulus and fracture toughness accurately. The results show that the Meyer’s index and Vickers hardness decrease with the increase temperature. It indicates that the permanent plastic deformation of RB-SiC ceramics is mainly responsible for the indentation size effect and the reduction of hardness at elevated temperature. Both material softening and plastic deformation will contribute to the indentation creep at elevated temperature as shown in the load-displacement curves. The elastic modulus decreases with the increase of temperature due to increase of contact depth as a result of less elastic recovery. In the indentation test for calculating fracture toughness, only radial-median cracks are identified by the relationship between crack length and applied load at all temperatures, although the fracture mode observed at the indent corner changes from transgranular at room temperature to intergranular at elevated temperature. As more energy is consumed by intergranular facture and cracking-healing takes place due to oxidation, only short crack length appears in the indentation test which implies an increase of fracture toughness with the increase of temperature. However, this tendency has an exception at the highest temperature of 1200 °C. This is because the free Si softening in RB-SiC specimen fails to resist crack propagation at extremely high temperature. Consequently, the crack length increases again which leads to the increase of the calculating fracture toughness at the highest temperature. These variations of hardness, elastic modulus and fracture toughness with temperatures will account for the possible change of material removal regimes occurred in some thermal-involved hybrid machining of RB-SiC ceramics.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic modulus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vickers hardness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elevated temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RB-SiC ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture toughness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Feihu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Xichun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cutts, Joshua ELSEVIER</subfield><subfield code="t">Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2)</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV007117167</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:744</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:28</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:426-435</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msea.2018.12.044</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">744</subfield><subfield code="j">2019</subfield><subfield code="b">28</subfield><subfield code="c">0128</subfield><subfield code="h">426-435</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.401884 |