Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings
The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch consta...
Ausführliche Beschreibung
Autor*in: |
Kanas, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:474 ; year:2019 ; number:2 ; day:15 ; month:06 ; pages:931-943 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2019.01.080 |
---|
Katalog-ID: |
ELV045931518 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045931518 | ||
003 | DE-627 | ||
005 | 20230624120922.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2019.01.080 |2 doi | |
028 | 5 | 2 | |a GBV00000000000535.pica |
035 | |a (DE-627)ELV045931518 | ||
035 | |a (ELSEVIER)S0022-247X(19)30114-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Kanas, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
264 | 1 | |c 2019 | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. | ||
650 | 7 | |a Harmonic mapping |2 Elsevier | |
650 | 7 | |a Bloch constant |2 Elsevier | |
650 | 7 | |a Functions convex in one direction |2 Elsevier | |
650 | 7 | |a Schwarzian derivative |2 Elsevier | |
650 | 7 | |a Univalent harmonic mapping |2 Elsevier | |
650 | 7 | |a Pre-Schwarzian derivative |2 Elsevier | |
700 | 1 | |a Maharana, S. |4 oth | |
700 | 1 | |a Prajapat, J.K. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:474 |g year:2019 |g number:2 |g day:15 |g month:06 |g pages:931-943 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2019.01.080 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 474 |j 2019 |e 2 |b 15 |c 0615 |h 931-943 |g 13 |
author_variant |
s k sk |
---|---|
matchkey_str |
kanassmaharanasprajapatjk:2019----:omfhpecwrineiaielcsosatncefcetonsnoe |
hierarchy_sort_str |
2019 |
bklnumber |
44.40 |
publishDate |
2019 |
allfields |
10.1016/j.jmaa.2019.01.080 doi GBV00000000000535.pica (DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kanas, S. verfasserin aut Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings 2019 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier Maharana, S. oth Prajapat, J.K. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 https://doi.org/10.1016/j.jmaa.2019.01.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 474 2019 2 15 0615 931-943 13 |
spelling |
10.1016/j.jmaa.2019.01.080 doi GBV00000000000535.pica (DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kanas, S. verfasserin aut Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings 2019 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier Maharana, S. oth Prajapat, J.K. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 https://doi.org/10.1016/j.jmaa.2019.01.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 474 2019 2 15 0615 931-943 13 |
allfields_unstemmed |
10.1016/j.jmaa.2019.01.080 doi GBV00000000000535.pica (DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kanas, S. verfasserin aut Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings 2019 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier Maharana, S. oth Prajapat, J.K. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 https://doi.org/10.1016/j.jmaa.2019.01.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 474 2019 2 15 0615 931-943 13 |
allfieldsGer |
10.1016/j.jmaa.2019.01.080 doi GBV00000000000535.pica (DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kanas, S. verfasserin aut Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings 2019 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier Maharana, S. oth Prajapat, J.K. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 https://doi.org/10.1016/j.jmaa.2019.01.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 474 2019 2 15 0615 931-943 13 |
allfieldsSound |
10.1016/j.jmaa.2019.01.080 doi GBV00000000000535.pica (DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kanas, S. verfasserin aut Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings 2019 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier Maharana, S. oth Prajapat, J.K. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 https://doi.org/10.1016/j.jmaa.2019.01.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 474 2019 2 15 0615 931-943 13 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:474 year:2019 number:2 day:15 month:06 pages:931-943 extent:13 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Harmonic mapping Bloch constant Functions convex in one direction Schwarzian derivative Univalent harmonic mapping Pre-Schwarzian derivative |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Kanas, S. @@aut@@ Maharana, S. @@oth@@ Prajapat, J.K. @@oth@@ |
publishDateDaySort_date |
2019-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3610 |
id |
ELV045931518 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045931518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624120922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2019.01.080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000535.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045931518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(19)30114-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanas, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bloch constant</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions convex in one direction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schwarzian derivative</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Univalent harmonic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pre-Schwarzian derivative</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maharana, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prajapat, J.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:474</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:931-943</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2019.01.080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">474</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">931-943</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
author |
Kanas, S. |
spellingShingle |
Kanas, S. ddc 610 bkl 44.40 Elsevier Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
authorStr |
Kanas, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.40 bkl Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative Elsevier |
topic |
ddc 610 bkl 44.40 Elsevier Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative |
topic_unstemmed |
ddc 610 bkl 44.40 Elsevier Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative |
topic_browse |
ddc 610 bkl 44.40 Elsevier Harmonic mapping Elsevier Bloch constant Elsevier Functions convex in one direction Elsevier Schwarzian derivative Elsevier Univalent harmonic mapping Elsevier Pre-Schwarzian derivative |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s m sm j p jp |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
ctrlnum |
(DE-627)ELV045931518 (ELSEVIER)S0022-247X(19)30114-3 |
title_full |
Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
author_sort |
Kanas, S. |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
931 |
author_browse |
Kanas, S. |
container_volume |
474 |
physical |
13 |
class |
610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kanas, S. |
doi_str_mv |
10.1016/j.jmaa.2019.01.080 |
dewey-full |
610 |
title_sort |
norm of the pre-schwarzian derivative, bloch's constant and coefficient bounds in some classes of harmonic mappings |
title_auth |
Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
abstract |
The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. |
abstractGer |
The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. |
abstract_unstemmed |
The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings |
url |
https://doi.org/10.1016/j.jmaa.2019.01.080 |
remote_bool |
true |
author2 |
Maharana, S. Prajapat, J.K. |
author2Str |
Maharana, S. Prajapat, J.K. |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jmaa.2019.01.080 |
up_date |
2024-07-06T18:52:22.221Z |
_version_ |
1803856843606327296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045931518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624120922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2019.01.080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000535.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045931518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(19)30114-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanas, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of the paper is a study of a family of sense-preserving complex valued harmonic functions f that are normalized in the open unit disk, and such that its analytic part is convex in one direction. We prove the univalence and establish estimates on pre-Schwarzian derivative and the Bloch constant for co-analytic part of harmonic mapping. The bounds of the coefficients of co-analytic part are also given.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bloch constant</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions convex in one direction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schwarzian derivative</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Univalent harmonic mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pre-Schwarzian derivative</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maharana, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prajapat, J.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:474</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:931-943</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2019.01.080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">474</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">931-943</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
score |
7.4014387 |